当前位置:网站首页>Spark SQL null value, Nan judgment and processing
Spark SQL null value, Nan judgment and processing
2022-07-25 15:15:00 【The south wind knows what I mean】
Spark SQL Null value Null,NaN Judge and deal with
Null and NaN
null It means nothing 、 Nonexistent or invalid object or address reference . It can be converted into 0, It's a global object .null ==false The value returned is false.
undefined It's a global property , Original value undefined. It tells us that some things have no assignment , No definition .undefined Cannot convert to any number , So use it in mathematical calculations , The return is NaN.
val d: Double = math.sqrt(-1.0)
println(d)
val n: Boolean = math.sqrt(-1.0).isNaN
println(n)

Spark SQL Null value Null,NaN Judge and deal with
val df: DataFrame = session.sql(
s""" |select * from sparktuning.course_pay1 |""".stripMargin)
// Delete null values and... For all columns NaN
val resNull=data1.na.drop()
resNull.limit(10).show()
+-------+------+---+------------+--------+-------------+---------+----------+------+
|affairs|gender|age|yearsmarried|children|religiousness|education|occupation|rating|
+-------+------+---+------------+--------+-------------+---------+----------+------+
| 0| male| 37| 10| no| 3| 18| 7| 4|
| 0| male| 57| 15| yes| 2| 14| 4| 4|
| 0|female| 32| 15| yes| 4| 16| 1| 2|
| 0| male| 22| 1.5| no| 4| 14| 4| 5|
| 0| male| 37| 15| yes| 2| 20| 7| 2|
| 0| male| 27| 4| yes| 4| 18| 6| 4|
| 0| male| 47| 15| yes| 5| 17| 6| 4|
| 0|female| 22| 1.5| no| 2| 17| 5| 4|
| 0|female| 27| 4| no| 4| 14| 5| 4|
| 0|female| 37| 15| yes| 1| 17| 5| 5|
+-------+------+---+------------+--------+-------------+---------+----------+------+
// Delete the null value and... Of a column NaN
val res=data1.na.drop(Array("gender","yearsmarried"))
// Delete a column that is not empty and not NaN Below 10 Of -- Note the field type
data1.na.drop(10,Array("gender","yearsmarried"))
// Fill in all null values [Boolean] The column of -- Note the field type
df.na.fill(false,Array("courseid"))
// Fill in all null Columns
val res123=data1.na.fill("wangxiao123")
res123.limit(10).show()
+-------+-----------+---+------------+--------+-------------+---------+----------+-----------+
|affairs| gender|age|yearsmarried|children|religiousness|education|occupation| rating|
+-------+-----------+---+------------+--------+-------------+---------+----------+-----------+
| 0| male| 37| 10| no| 3| 18| 7| 4|
| 0|wangxiao123| 27| wangxiao123| no| 4| 14| 6|wangxiao123|
| 0|wangxiao123| 32| wangxiao123| yes| 1| 12| 1|wangxiao123|
| 0|wangxiao123| 57| wangxiao123| yes| 5| 18| 6|wangxiao123|
| 0|wangxiao123| 22| wangxiao123| no| 2| 17| 6|wangxiao123|
| 0|wangxiao123| 32| wangxiao123| no| 2| 17| 5|wangxiao123|
| 0| female| 22| wangxiao123| no| 2| 12| 1|wangxiao123|
| 0| male| 57| 15| yes| 2| 14| 4| 4|
| 0| female| 32| 15| yes| 4| 16| 1| 2|
| 0| male| 22| 1.5| no| 4| 14| 4| 5|
+-------+-----------+---+------------+--------+-------------+---------+----------+-----------+
// Fill in the control of the specified column -- Multiple columns with the same value
df1.na.fill(123456,cols = Array("courseid","pointlistid")).show(false)
+---------+--------+-------+-----+-----------+--------+----+
|chapterid|courseid|majorid|money|pointlistid|dt |dn |
+---------+--------+-------+-----+-----------+--------+----+
|4 |123456 |5 |100 |3 |20190722|webA|
|7 |123456 |7 |100 |1 |20190722|webA|
|8 |123456 |3 | |8 |20190722|webA|
|5 |14 |3 |100 |123456 |20190722|webA|
|4 |15 |2 |100 |3 |20190722|webA|
|9 |123456 |8 |100 |7 |20190722|webA|
|7 |17 |7 |100 |123456 |20190722|webA|
|0 |18 |9 | |7 |20190722|webA|
|5 |123456 |8 |100 |4 |20190722|webA|
|4 |20 |1 |100 |123456 |20190722|webA|
|4 |123456 |5 |100 |1 |20190722|webA|
|0 |22 |3 |100 |9 |20190722|webA|
|1 |123456 |8 |100 |0 |20190722|webA|
|4 |24 |0 |100 |5 |20190722|webA|
|9 |123456 |9 |100 |0 |20190722|webA|
+---------+--------+-------+-----+-----------+--------+----+
// Fill in the control of the specified column -- Multiple columns of different values
df1.na.fill(Map("courseid"->123456,"pointlistid"->654321)).show(false)
+---------+--------+-------+-----+-----------+--------+----+
|chapterid|courseid|majorid|money|pointlistid|dt |dn |
+---------+--------+-------+-----+-----------+--------+----+
|4 |123456 |5 |100 |3 |20190722|webA|
|7 |123456 |7 |100 |1 |20190722|webA|
|8 |123456 |3 | |8 |20190722|webA|
|5 |14 |3 |100 |654321 |20190722|webA|
|4 |15 |2 |100 |3 |20190722|webA|
|9 |123456 |8 |100 |7 |20190722|webA|
|7 |17 |7 |100 |654321 |20190722|webA|
|0 |18 |9 | |7 |20190722|webA|
|5 |123456 |8 |100 |4 |20190722|webA|
|4 |20 |1 |100 |654321 |20190722|webA|
|4 |123456 |5 |100 |1 |20190722|webA|
|0 |22 |3 |100 |9 |20190722|webA|
|1 |123456 |8 |100 |0 |20190722|webA|
|4 |24 |0 |100 |5 |20190722|webA|
|9 |123456 |9 |100 |0 |20190722|webA|
+---------+--------+-------+-----+-----------+--------+----+
// Query null column
data1.filter("gender is null").select("gender").limit(10).show
+------+
|gender|
+------+
| null|
| null|
| null|
| null|
| null|
+------+
data1.filter("gender is not null").select("gender").limit(10).show
+------+
|gender|
+------+
| male|
|female|
| male|
|female|
| male|
| male|
| male|
| male|
|female|
|female|
+------+
data1.filter( data1("gender").isNull ).select("gender").limit(10).show
+------+
|gender|
+------+
| null|
| null|
| null|
| null|
| null|
+------+
data1.filter("gender<>''").select("gender").limit(10).show
+------+
|gender|
+------+
| male|
|female|
| male|
|female|
| male|
| male|
| male|
| male|
|female|
|female|
+------+
边栏推荐
- Docker上运行redis以配置文件方式启动,连接客户端报错Error: Server closed the connection
- CMake指定OpenCV版本
- dpdk 收发包问题案例:使用不匹配的收发包函数触发的不收包问题定位
- npm的nexus私服 E401 E500错误处理记录
- Bridge NF call ip6tables is an unknown key exception handling
- "How to use" agent mode
- 瀑布流布局
- My creation anniversary
- Overview of JS synchronous, asynchronous, macro task and micro task
- Raft of distributed consistency protocol
猜你喜欢

Docker上运行redis以配置文件方式启动,连接客户端报错Error: Server closed the connection

用OpenPose进行单个或多个人体姿态估计

图片裁剪cropper 示例

流程控制(上)

【微信小程序】小程序宿主环境详解

在win10系统下使用命令查看WiFi连接密码

"How to use" agent mode

MySql的安装配置超详细教程与简单的建库建表方法

Overview of JS synchronous, asynchronous, macro task and micro task

Solve the timeout of dbeaver SQL client connection Phoenix query
随机推荐
图片的懒加载
RedisCluster搭建和扩容
Solve the error caused by too large file when uploading file by asp.net
pkg_ Resources dynamic loading plug-in
SQL Server forcibly disconnects
Handle Oracle deadlock
TypeScript学习2——接口
Tasks, micro tasks, queues and scheduling (animation shows each step of the call)
用OpenPose进行单个或多个人体姿态估计
Spark-SQL UDF函数
Leo-sam: tightly coupled laser inertial odometer with smoothing and mapping
System. Accessviolationexception: an attempt was made to read or write to protected memory. This usually indicates that other memory is corrupted
Process control (Part 1)
基于OpenCV和YOLOv3的目标检测实例应用
Spark002 --- spark task submission, pass JSON as a parameter
Implementation of asynchronous FIFO
LeetCode第 303 场周赛
pl/sql 创建并执行oralce存储过程,并返回结果集
iframe嵌套其它网站页面 全屏设置
反射-笔记