当前位置:网站首页>Method of converting VOC format data set to Yolo format data set
Method of converting VOC format data set to Yolo format data set
2022-06-11 11:08:00 【Saga】
Most open source datasets today are VOC Format , But we often need to use data sets in other formats when we use them , Very sad , Is it necessary to label one by one ? In fact, there is no need to , Just a simple piece of code is required to directly convert VOC Format data set to yolo Format datasets , The following code can automatically store training sets in several folders , Verification set , And corresponding labels , The data set allocation ratio can also be customized and modified . See below for the specific code :
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
import random
from shutil import copyfile
classes = ["Before a whole","After a whole","Chest former","Chest after","Raise hand before","Raise hand after","Global left position","Global right position","Front face","Left face","Right face"] ## Here, write the class corresponding to the tag
# classes=["ball"]
TRAIN_RATIO = 80 # Indicates that the data set is divided into training set and verification set , according to 2:8 Proportional
def clear_hidden_files(path):
dir_list = os.listdir(path)
for i in dir_list:
abspath = os.path.join(os.path.abspath(path), i)
if os.path.isfile(abspath):
if i.startswith("._"):
os.remove(abspath)
else:
clear_hidden_files(abspath)
def convert(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)
def convert_annotation(image_id):
in_file = open('VOCdevkit/VOC2007/Annotations/%s.xml' % image_id)
out_file = open('VOCdevkit/VOC2007/YOLOLabels/%s.txt' % image_id, 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
in_file.close()
out_file.close()
wd = os.getcwd()
wd = os.getcwd()
data_base_dir = os.path.join(wd, "VOCdevkit/")
if not os.path.isdir(data_base_dir):
os.mkdir(data_base_dir)
work_sapce_dir = os.path.join(data_base_dir, "VOC2007/")
if not os.path.isdir(work_sapce_dir):
os.mkdir(work_sapce_dir)
annotation_dir = os.path.join(work_sapce_dir, "Annotations/")
if not os.path.isdir(annotation_dir):
os.mkdir(annotation_dir)
clear_hidden_files(annotation_dir)
image_dir = os.path.join(work_sapce_dir, "JPEGImages/")
if not os.path.isdir(image_dir):
os.mkdir(image_dir)
clear_hidden_files(image_dir)
yolo_labels_dir = os.path.join(work_sapce_dir, "YOLOLabels/")
if not os.path.isdir(yolo_labels_dir):
os.mkdir(yolo_labels_dir)
clear_hidden_files(yolo_labels_dir)
yolov5_images_dir = os.path.join(data_base_dir, "images/")
if not os.path.isdir(yolov5_images_dir):
os.mkdir(yolov5_images_dir)
clear_hidden_files(yolov5_images_dir)
yolov5_labels_dir = os.path.join(data_base_dir, "labels/")
if not os.path.isdir(yolov5_labels_dir):
os.mkdir(yolov5_labels_dir)
clear_hidden_files(yolov5_labels_dir)
yolov5_images_train_dir = os.path.join(yolov5_images_dir, "train/")
if not os.path.isdir(yolov5_images_train_dir):
os.mkdir(yolov5_images_train_dir)
clear_hidden_files(yolov5_images_train_dir)
yolov5_images_test_dir = os.path.join(yolov5_images_dir, "val/")
if not os.path.isdir(yolov5_images_test_dir):
os.mkdir(yolov5_images_test_dir)
clear_hidden_files(yolov5_images_test_dir)
yolov5_labels_train_dir = os.path.join(yolov5_labels_dir, "train/")
if not os.path.isdir(yolov5_labels_train_dir):
os.mkdir(yolov5_labels_train_dir)
clear_hidden_files(yolov5_labels_train_dir)
yolov5_labels_test_dir = os.path.join(yolov5_labels_dir, "val/")
if not os.path.isdir(yolov5_labels_test_dir):
os.mkdir(yolov5_labels_test_dir)
clear_hidden_files(yolov5_labels_test_dir)
train_file = open(os.path.join(wd, "yolov5_train.txt"), 'w')
test_file = open(os.path.join(wd, "yolov5_val.txt"), 'w')
train_file.close()
test_file.close()
train_file = open(os.path.join(wd, "yolov5_train.txt"), 'a')
test_file = open(os.path.join(wd, "yolov5_val.txt"), 'a')
list_imgs = os.listdir(image_dir) # list image files
prob = random.randint(1, 100)
print("Probability: %d" % prob)
for i in range(0, len(list_imgs)):
path = os.path.join(image_dir, list_imgs[i])
if os.path.isfile(path):
image_path = image_dir + list_imgs[i]
voc_path = list_imgs[i]
(nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path))
(voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path))
annotation_name = nameWithoutExtention + '.xml'
annotation_path = os.path.join(annotation_dir, annotation_name)
label_name = nameWithoutExtention + '.txt'
label_path = os.path.join(yolo_labels_dir, label_name)
prob = random.randint(1, 100)
print("Probability: %d" % prob)
if (prob < TRAIN_RATIO): # train dataset
if os.path.exists(annotation_path):
train_file.write(image_path + '\n')
convert_annotation(nameWithoutExtention) # convert label
copyfile(image_path, yolov5_images_train_dir + voc_path)
copyfile(label_path, yolov5_labels_train_dir + label_name)
else: # test dataset
if os.path.exists(annotation_path):
test_file.write(image_path + '\n')
convert_annotation(nameWithoutExtention) # convert label
copyfile(image_path, yolov5_images_test_dir + voc_path)
copyfile(label_path, yolov5_labels_test_dir + label_name)
train_file.close()
test_file.close()
About relationships between files , Some scholars may be confused , The original VOC How to store format data set files , And the newly generated yolo Where will the format data set be stored , See the following explanation for these doubts .
Copy first VOC Format data set folder to the root directory where the above code is located , See below :
In the file VOCdevkit See the following for the contents contained in :
After running the above code, you get a new yolo Format datasets , See the following table for the file relationship of the new dataset :

Above picture , I have indicated which file holds the training data set , Verify the file location corresponding to the set and which file to store the label .
That's all VOC Format data set to yolo Methods of formatting data sets , I hope I can help you who are losing your hair like me , Support a lot , thank you !
边栏推荐
- Common construction and capacity operation of string class
- MySQL optimized learning diary 10 - locking mechanism
- Content-Type: multipart/form-data; boundary=${bound}
- 34. find the first and last positions of elements in the sorted array ●●
- MWC 2022 lights up the future, and everything serves
- 校园失物招领小程序源码可作毕业设计
- 错误的导航分类横条代码版本
- 数字藏品app小程序公众号系统开发
- Beginning an excellent emlog theme
- 使用pydub修改wav文件的比特率,报错:C:\ProgramData\Anaconda3\lib\site-packages\pydub\utils.py:170: RuntimeWarning:
猜你喜欢

MN梦奈宝塔主机系统V1.5版本发布

使用Yolov3训练自己制作数据集,快速上手

Using domestic MCU (national technology n32g031f8s7) to realize pwm+dma control ws2812

Surrounddepth: self supervised multi camera look around depth estimation

Using ribbon to realize client load balancing

Store management skills: how to manage chain stores efficiently?
![Electron desktop development (development of an alarm clock [End])](/img/2b/dd59ebc8d11bedfc53020d69f1aa69.png)
Electron desktop development (development of an alarm clock [End])

How programmers do sidelines

MYSQL(九)

命令模式--进攻,秘密武器
随机推荐
恋爱时将房屋一半产权登记在女方名下,分手后想要回
Cloud image quality assistant IAPP source code
Team level safety training, new employee induction training education courseware, full content ppt application
命令模式--进攻,秘密武器
985高校博士因文言文致谢走红!导师评价其不仅SCI写得好...
Distance measurement - Euclidean distance
Introduction and usage of Eval function
Xiao P weekly Vol.08
数字藏品系统源码搭建
Is the securities account opened by qiniu Gang safe and reliable?
Can't you be free without wealth?
Implementation of competition scoring system based on C language
[K-means] K-means learning examples
国际多语言出海商城返佣产品自动匹配订单源码
Working principle analysis of rxjs fromEvent
数据库系统概论 ---- 第二章 -- 关系数据库(2.1~2.3)(重要知识点)
C language course design
[DBSCAN] DBSCAN instance
Don't be a fake worker
如何养成一个好习惯?靠毅力?靠决心?都不是!