当前位置:网站首页>Energy principle and variational method note 17: generalized variational principle (identification factor method)
Energy principle and variational method note 17: generalized variational principle (identification factor method)
2022-07-23 19:51:00 【FakeOccupational】
See video link


The right side of the figure below is right “ sign out ” The explanation of , And for the problem m i n ( x 2 + y 2 ) Satisfy x = 2 y , Because the calculation error is too large , Exit and bring in , Use Lagrange multiplier method , Then use the method of identifying factors , Let first-order differential = 0 , Identify λ The right side of the figure below is right “ sign out ” The explanation of , And for the problem min(x^2+y^2) Satisfy x=2y,\\ Because the calculation error is too large , Exit and bring in , Use Lagrange multiplier method ,\\ Then use the identification factor Methods , Let first-order differential =0, Identify \lambda The right side of the figure below is right “ sign out ” The explanation of , And for the problem min(x2+y2) Satisfy x=2y, Because the calculation error is too large , Exit and bring in , Use Lagrange multiplier method , Then use the method of identifying factors , Let first-order differential =0, Identify λ

The first-order differential corresponds to the first-order variational The first-order differential corresponds to the first-order variational The first-order differential corresponds to the first-order variational 
After introducing the identification factor, we can get the functional without Lagrange multiplier After introducing the identification factor, we can get the functional without Lagrange multiplier After introducing the identification factor, we can get the functional without Lagrange multiplier 
summary summary summary 
verification verification verification

Solve the previous approximation problem Solve the previous approximation problem Solve the previous approximation problem 
Generalized variational principle Generalized variational principle Generalized variational principle 
边栏推荐
- 二、MFC窗口和消息
- MySQL data recovery - using the data directory
- Little fish sends lidar | just dinner is the first lottery
- 三维点云课程(六)——三维目标检测
- (干货)结合Scikit-learn介绍几种常用的特征选择方法
- Whether the R language test sample conforms to normality (whether the test sample is from a normally distributed population): SF of nortest package is used The test function verifies whether the sampl
- R language uses dwilcox function to generate Wilcoxon rank sum statistical distribution density function data, and uses plot function to visualize Wilcoxon rank sum statistical distribution density fu
- GPS北斗时钟服务器(NTP网络时钟系统)施工部署方案
- 2、 MFC windows and messages
- web安全入门-ssh测试与防御
猜你喜欢

Understand chisel language. 21. Chisel sequential circuit (I) -- detailed explanation of chisel register

结构体大小的计算(结构体内存对齐)
![[英雄星球七月集训LeetCode解题日报] 第23日 字典树](/img/e3/74cb4ce8aa08e0ea90e26bb2d197c3.png)
[英雄星球七月集训LeetCode解题日报] 第23日 字典树

Powercli management VMware vCenter one click batch deployment OVA

Analyse de l'industrie | interphone logistique

时代潮头,华为将风帆对准数字金融的风与海

Powercli moves virtual machines from host01 host to host02 host

基于自学习的机器人决策系统(达闼科技赵开勇)

Type-C Bluetooth speaker single C-Port rechargeable OTG solution

Attack and defense world web question Fakebook
随机推荐
R language uses the ggarrange function of ggpubr package to combine multiple images, and uses the ggexport function to save the visual images in BMP format (width parameter specifies width, height par
MySQL读写分离的三种实现方案
行业分析| 物流对讲
什么是弱网测试?为什么要进行弱网测试?怎么进行弱网测试?「建议收藏」
web安全入门-ssh测试与防御
R语言使用dwilcox函数生成Wilcoxon秩和统计分布密度函数数据、使用plot函数可视化Wilcoxon秩和统计分布密度函数数据
关于:在企业局域网中启用 Delivery Optimization
Powercli management VMware vCenter one click batch deployment OVA
基于自学习的机器人决策系统(达闼科技赵开勇)
能量原理与变分法笔记18:虚力原理
impala的详细写入流程
Exch:POP3 和 IMAP4 操作指南
ACM mm 2022 oral | dig: the new framework of self-monitoring character recognition refreshes the recognition performance of 11 public scene character data sets, with an average improvement of 5%
搜索二维矩阵
Little fish sends lidar | just dinner is the first lottery
socat 使用「建议收藏」
Latex(katex)csdn 希腊字母表示,数学符号,集合符号,特殊标记
Home NAS server (3) | SSD cache acceleration mechanical hard disk
PC性能监测工具,软件测试人员不可或缺的好帮手
(干货)结合Scikit-learn介绍几种常用的特征选择方法