当前位置:网站首页>Simulation of Future Air Pollution Changes Based on Global Model Comparison Program CMIP6 and Regional Climate-Chemistry Coupling Model WRF-Chem
Simulation of Future Air Pollution Changes Based on Global Model Comparison Program CMIP6 and Regional Climate-Chemistry Coupling Model WRF-Chem
2022-07-30 07:08:00 【WangYan2022】
The national carbon peak carbon neutrality (double carbon) goal puts forward new requirements for future air pollution control, and also puts forward uncertainties for the simulation and prediction of the evolution trend and spatial pattern of the atmospheric environment under the background of future climate changesex and challenges.Based on different shared socioeconomic pathways (SSPs) and the latest anthropogenic emission trends, the Sixth International Coupling Model Intercomparison Project (CMIP6) projected future climate change trends under different social sharing pathways and GHG emission scenarios. These results are as follows:It is possible to simulate and predict the evolution trend of air pollution under the background of future climate change.
Dynamic downscaling of the projected global climate data from the Model Comparison Program, combined with projected future climate change, using regional climate models and coupled climate-chemical models to predict and simulate the temporal and spatial evolution of air pollution in the future.The model comparison plan involves format conversion and downscaling of data, and regional models involve complex dynamic and chemical processes, which are difficult in data utilization and model operation.
Lecture/On MachineCMIP6 Data and Operation Platform Construction
1. CMIP Model Comparison Program Introduction: Background, Meaning, Scenario Explanation

2. CMIP data download method

3. Data format explanation and practice (NETCDF)

4. Explanation and practice of data conversion tools (CDO/NCO)

5. Installation of virtual machines and related software libraries

Lecture/Lab CMIP6 data-driven WRF and WRF-Chem modes
1.WRF data format explanation

2.CMIP6 scenario data is used to provide meteorological driving field code interpretation in WRF-Chem model

3. Explanation of future scenario emission inventory (SSP, DPEC)

4. Data processing practice
Lecture/On-board Future Scenario Simulation of WRF-Chem
1. Based on CMIP6 and future scenario emission inventory,Driving WRF-Chem Model
2. Initial Boundary Conditions
3. Explanation of Simulation Experiment Ideas:
1) Impact Trend of Climate Change and Emission Change on Future Air Pollution
2) Pollution-Meteorological Interaction
Lecture/On-board Q&A
1. Data acquisition and processing
2. Mode setting
3. Other problems
Recommended models for atmospheric science and air pollution:
●[Tutorial] Calpuff Model of Air Pollution Diffusion
●[Tutorial] A full set of regional high-precision geoscience simulation WRF meteorological modeling, multi-case application and exquisite mapping
●[Tutorial] SMOKE model emission inventory processing technology and practical application method in multi-mode and VOCs emission accounting
●【Tutorial】Application and Improvement of Air Quality Prediction Model System (CMAQ) and Practical Techniques for Establishment of Pollutant Emission Inventory
●【Tutorial】Pretreatment, Operation and Practical Application of WRF-Hydro Coupling Model of Meteorology and Hydrology
●【Tutorial】RegionApplication of Meteorology-Atmospheric Chemistry Online Coupling Model (WRF/Chem) in Atmospheric Environment
●【Tutorial】Practical Technical Application of CLM Land Surface Process Model
●【Tutorial】Practical Technical Application of NCL Data Analysis and Processing
●【Tutorial】Practical technical application of PMF source analysis of atmospheric particulate matter
●【Tutorial】EKMA curve and atmospheric O3 source analysis
●【Tutorial】Practical technical application of CMIP6 data processing
●【Tutorial】WRF DA dataAssimilation System Theory, Operation and Variation, Hybrid Assimilation New Method Technical Application
●【Tutorial】Practical Technical Application of Python Artificial Intelligence in Meteorology
●【Tutorial】R Language in Meteorology, Hydrology Data Processing and ApplicationResult analysis, drawing practice technology application
●【Tutorial】Air quality simulation and pollution source analysis technology and case study based on CAMx
●【Tutorial】MCM box model modeling method and practical application of atmospheric O3 source analysis
br> ●【Tutorial】The application of Python in the automatic operation and pre-processing of WRF model
边栏推荐
- "MySQL Advanced Chapter" four, the storage structure of the index
- 什么是过拟合、欠拟合现象以及如何缓解?
- Detailed explanation of regular expression syntax and practical examples
- 基于MATLAB 2021b的机器学习、深度学习
- A Spark task tuning 】 【 one day suddenly slow down how to solve
- MySQL 特殊语句及优化器
- Flink CDC implements Postgres to MySQL streaming processing transmission case
- 十六、Kotlin进阶学习:协程详细学习。
- FastAPI Quick Start
- Flink-stream/batch/OLAP integrated to get Flink engine
猜你喜欢

配置MMdetection环境并训练

Dropout原理及作用

在线sql编辑查询工具sql-editor

Xcode 绑定按钮点击事件

二十二、Kotlin进阶学习:简单学习RecyclerView实现列表展示;

Nodejs PM2 monitoring and alarm email (2)

第一个WebAssembly程序

Invalid bound statement (not found)出现的原因和解决方法

Jackson serialization failure problem - oracle data return type can't find the corresponding Serializer

树莓派OpenCV+OpenCV-contrib
随机推荐
九、Kotlin基础学习:1、Companion的扩展方法和扩展属性;2、一般类的扩展方法和扩展属性;3、委托;
Pytorch(二):数据读取机制(DataLoader、DataSet)与图像预处理模块(transforms)
MySQL 特殊语句及优化器
Using custom annotations, statistical method execution time
Conda 安装 tensorflow gpu 1.13.1(验证可行)
HSPF 模型应用
十五、Kotlin进阶学习:一、子类与子类型;二、协变;三、逆变;
什么是过拟合、欠拟合现象以及如何缓解?
用户密码加密编码使用 Bcrypt 代替 MD5,SHA1和SHA256
Monstache执行monstache -f config.toml出错No processor type exists with name [attachment] [type=parse_exc
Mysql 客户端常见异常分析
标准化(Normalization)知识点总结
“R语言+遥感”的水环境综合评价方法
Trust anchor for certification path not found. Exception solution.
Student achievement management system (C language version)
十三、Kotlin进阶学习:内联函数let、also、with、run、apply的用法。
建造者模式(Swift 实现)
MySQL 数据类型及占用空间
第一个WebAssembly程序
Invalid bound statement (not found)出现的原因和解决方法