当前位置:网站首页>Simulation of Future Air Pollution Changes Based on Global Model Comparison Program CMIP6 and Regional Climate-Chemistry Coupling Model WRF-Chem
Simulation of Future Air Pollution Changes Based on Global Model Comparison Program CMIP6 and Regional Climate-Chemistry Coupling Model WRF-Chem
2022-07-30 07:08:00 【WangYan2022】
The national carbon peak carbon neutrality (double carbon) goal puts forward new requirements for future air pollution control, and also puts forward uncertainties for the simulation and prediction of the evolution trend and spatial pattern of the atmospheric environment under the background of future climate changesex and challenges.Based on different shared socioeconomic pathways (SSPs) and the latest anthropogenic emission trends, the Sixth International Coupling Model Intercomparison Project (CMIP6) projected future climate change trends under different social sharing pathways and GHG emission scenarios. These results are as follows:It is possible to simulate and predict the evolution trend of air pollution under the background of future climate change.
Dynamic downscaling of the projected global climate data from the Model Comparison Program, combined with projected future climate change, using regional climate models and coupled climate-chemical models to predict and simulate the temporal and spatial evolution of air pollution in the future.The model comparison plan involves format conversion and downscaling of data, and regional models involve complex dynamic and chemical processes, which are difficult in data utilization and model operation.
Lecture/On MachineCMIP6 Data and Operation Platform Construction
1. CMIP Model Comparison Program Introduction: Background, Meaning, Scenario Explanation
2. CMIP data download method
3. Data format explanation and practice (NETCDF)
4. Explanation and practice of data conversion tools (CDO/NCO)
5. Installation of virtual machines and related software libraries
Lecture/Lab CMIP6 data-driven WRF and WRF-Chem modes
1.WRF data format explanation
2.CMIP6 scenario data is used to provide meteorological driving field code interpretation in WRF-Chem model
3. Explanation of future scenario emission inventory (SSP, DPEC)
4. Data processing practice
Lecture/On-board Future Scenario Simulation of WRF-Chem
1. Based on CMIP6 and future scenario emission inventory,Driving WRF-Chem Model
2. Initial Boundary Conditions
3. Explanation of Simulation Experiment Ideas:
1) Impact Trend of Climate Change and Emission Change on Future Air Pollution
2) Pollution-Meteorological Interaction
Lecture/On-board Q&A
1. Data acquisition and processing
2. Mode setting
3. Other problems
Recommended models for atmospheric science and air pollution:
●[Tutorial] Calpuff Model of Air Pollution Diffusion
●[Tutorial] A full set of regional high-precision geoscience simulation WRF meteorological modeling, multi-case application and exquisite mapping
●[Tutorial] SMOKE model emission inventory processing technology and practical application method in multi-mode and VOCs emission accounting
●【Tutorial】Application and Improvement of Air Quality Prediction Model System (CMAQ) and Practical Techniques for Establishment of Pollutant Emission Inventory
●【Tutorial】Pretreatment, Operation and Practical Application of WRF-Hydro Coupling Model of Meteorology and Hydrology
●【Tutorial】RegionApplication of Meteorology-Atmospheric Chemistry Online Coupling Model (WRF/Chem) in Atmospheric Environment
●【Tutorial】Practical Technical Application of CLM Land Surface Process Model
●【Tutorial】Practical Technical Application of NCL Data Analysis and Processing
●【Tutorial】Practical technical application of PMF source analysis of atmospheric particulate matter
●【Tutorial】EKMA curve and atmospheric O3 source analysis
●【Tutorial】Practical technical application of CMIP6 data processing
●【Tutorial】WRF DA dataAssimilation System Theory, Operation and Variation, Hybrid Assimilation New Method Technical Application
●【Tutorial】Practical Technical Application of Python Artificial Intelligence in Meteorology
●【Tutorial】R Language in Meteorology, Hydrology Data Processing and ApplicationResult analysis, drawing practice technology application
●【Tutorial】Air quality simulation and pollution source analysis technology and case study based on CAMx
●【Tutorial】MCM box model modeling method and practical application of atmospheric O3 source analysis
br> ●【Tutorial】The application of Python in the automatic operation and pre-processing of WRF model
边栏推荐
- Mycat2.0搭建教程
- Dropout原理及作用
- 六、Kotlin基础学习:函数
- Flink-stream/batch/OLAP integrated to get Flink engine
- 十六、Kotlin进阶学习:协程详细学习。
- Mysql client common exception analysis
- Generalized Focal Loss 论文阅读笔记
- 十、Kotlin基础学习:1、延迟加载;2、异常处理;3、使用 throw 主动抛出异常;4、自定义异常;
- 使用kotlin扩展插件/依赖项简化代码(在最新版本4.0以后,此插件已被弃用,故请选择性学习,以了解为主。)
- Student management system
猜你喜欢
Pytorch(三):可视化工具(Tensorboard、Visdom)
SQL Server database generation and execution of SQL scripts
Jdbc & Mysql timeout分析
正则表达式语法详解及实用实例
工厂模式(Swift 实现)
Trust anchor for certification path not found. Exception solution.
MySQL achievement method 】 【 5 words, single table SQL queries
mysql delete duplicate data in the table, (retain only one row)
MySQL - Function and Constraint Commands
R语言 生态环境领域应用
随机推荐
Thread state of five
基于PyTorch深度学习无人机遥感影像目标检测、地物分类及语义分割
Nacos配置中心用法详细介绍
十四、Kotlin进阶学习:一、内联函数 inline;二、泛型;三、泛型约束;四、子类与子类型;
DeepLearing4j深度学习之Yolo Tiny实现目标检测
学生成绩管理系统(C语言版)
用pop3收取gmail的邮件
MySQL开窗函数
sql concat() function
函数的信息传递(C语言实践)
Invalid bound statement (not found)出现的原因和解决方法
Flink CDC implements Postgres to MySQL streaming processing transmission case
Go简单实现协程池
php vulnerability full solution
MYSQL一站式学习,看完即学完
Kotlin协程的简单用法:1、GlobalScope(不建议使用);2、lifecycleScope、viewModelScope(建议使用);
十一、Kotlin进阶学习:1、集合;2、List操作;3、可变集合——MutableList;4、Set;5、Map;6、MutableMap;
Conda 安装 tensorflow gpu 1.13.1(验证可行)
Function functional interface and application
第一个WebAssembly程序