当前位置:网站首页>数学-求和符号的性质
数学-求和符号的性质
2022-08-05 02:48:00 【Code_LT】
1. 单重求和
∑ i = 1 n f ( x i ) = f ( x 1 ) + f ( x 2 ) + ⋯ + f ( x n ) \sum_{i=1}^nf(x_i)=f(x_1)+f(x_2)+\cdots+f(x_n) i=1∑nf(xi)=f(x1)+f(x2)+⋯+f(xn)
1.1 性质1,提取公因式
若 h ( y , z ) h(y,z) h(y,z)的取值和x无关,则有:
∑ i = 1 n h ( y , z ) f ( x i ) = h ( y , z ) ∑ i = 1 n f ( x i ) \sum_{i=1}^nh(y,z)f(x_i)=h(y,z)\sum_{i=1}^nf(x_i) i=1∑nh(y,z)f(xi)=h(y,z)i=1∑nf(xi)
将变量 i i i写成 x i x_i xi更形象:
∑ x i h ( y , z ) f ( x i ) = h ( y , z ) ∑ x i f ( x i ) \sum_{x_i}h(y,z)f(x_i)=h(y,z)\sum_{x_i}f(x_i) xi∑h(y,z)f(xi)=h(y,z)xi∑f(xi)
上面有了简写,实际上 x i ∈ X x_i \in X xi∈X, X = { x 1 , x 2 , ⋯ , x n } X=\{x_1,x_2,\cdots,x_n\} X={ x1,x2,⋯,xn}:
∑ x i ∈ X 通常可简写为 ∑ x i ,表示累加所有 x i 可取的值 \sum_{x_i \in X}通常可简写为\sum_{x_i},表示累加所有x_i可取的值 xi∈X∑通常可简写为xi∑,表示累加所有xi可取的值
2. 多重求和
以两重求和为例:
∑ i = 1 n ∑ j = 1 m f ( x i ) h ( y j ) = f ( x 1 ) ∑ j = 1 m h ( y j ) + f ( x 2 ) ∑ j = 1 m h ( y j ) + ⋯ + f ( x n ) ∑ j = 1 m h ( y j ) = 再展开就省略不写了 \sum_{i=1}^n\sum_{j=1}^mf(x_i)h(y_j)=f(x_1)\sum_{j=1}^mh(y_j)+f(x_2)\sum_{j=1}^mh(y_j)+\cdots+f(x_n)\sum_{j=1}^mh(y_j)=再展开就省略不写了 i=1∑nj=1∑mf(xi)h(yj)=f(x1)j=1∑mh(yj)+f(x2)j=1∑mh(yj)+⋯+f(xn)j=1∑mh(yj)=再展开就省略不写了
2.1 性质1,符号顺序可换
两重:
∑ i = 1 n ∑ j = 1 m f ( x i ) h ( y j ) = ∑ j = 1 m ∑ i = 1 n f ( x i ) h ( y j ) \sum_{i=1}^n{\color{red} \sum_{j=1}^m}f(x_i)h(y_j)={\color{red} \sum_{j=1}^m}\sum_{i=1}^nf(x_i)h(y_j) i=1∑nj=1∑mf(xi)h(yj)=j=1∑mi=1∑nf(xi)h(yj)
注意,当某个求和的范围受另一个变量限制时,符号交换律就不适用了,如:
∑ i = 1 n ∑ j = 1 i f ( x i ) h ( y j ) ≠ ∑ j = 1 i ∑ i = 1 n f ( x i ) h ( y j ) \sum_{i=1}^n\sum_{j=1}^{\color{red} i}f(x_i)h(y_j) {\color{red} \neq}\sum_{j=1}^ {\color{red} i}\sum_{i=1}^nf(x_i)h(y_j) i=1∑nj=1∑if(xi)h(yj)=j=1∑ii=1∑nf(xi)h(yj)
多重:
∑ x i ∑ y j ∑ z k f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) = ∑ z k ∑ y j ∑ x i f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f_1(x_i)f_2(y_j)f_3(z_k)=\sum_{z_k}\sum_{y_j}\sum_{x_i}f_1(x_i)f_2(y_j)f_3(z_k) xi∑yj∑zk∑f1(xi)f2(yj)f3(zk)=zk∑yj∑xi∑f1(xi)f2(yj)f3(zk)
f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) f_1(x_i)f_2(y_j)f_3(z_k) f1(xi)f2(yj)f3(zk)可看做一个函数 f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f(x1,x2,x3),则得到更通用的形式:
∑ x i ∑ y j ∑ z k f ( x 1 , x 2 , x 3 ) = ∑ z k ∑ y j ∑ x i f ( x 1 , x 2 , x 3 ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f(x_1,x_2,x_3)=\sum_{z_k}\sum_{y_j}\sum_{x_i}f(x_1,x_2,x_3) xi∑yj∑zk∑f(x1,x2,x3)=zk∑yj∑xi∑f(x1,x2,x3)
牢记可调换的前提:x,y,z的取值范围,相互没有影响。
2.1 性质2,符号可分别求
有时候,为了求解的方便,我们并不希望函数 f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f(x1,x2,x3)写成一个整体,而是拆开后分别求值。
∑ x i ∑ y j ∑ z k f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) = ∑ x i f 1 ( x i ) ∑ y j f 2 ( y j ) ∑ z k f 3 ( z k ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f_1(x_i)f_2(y_j)f_3(z_k)=\sum_{x_i}f_1(x_i)\sum_{y_j}f_2(y_j)\sum_{z_k}f_3(z_k) xi∑yj∑zk∑f1(xi)f2(yj)f3(zk)=xi∑f1(xi)yj∑f2(yj)zk∑f3(zk)
x,y,z的取值范围也要满足相互没有影响,可通过展开计算进行简单的证明。
上述性质的好处在于,可将复杂的问题分成三个部分分别计算,再求乘积。
( ∑ x i f 1 ( x i ) ) ( ∑ y j f 2 ( y j ) ) ( ∑ z k f 3 ( z k ) ) {\color{red}(\sum_{x_i}f_1(x_i))} {\color{green}(\sum_{y_j}f_2(y_j))} {\color{blue}(\sum_{z_k}f_3(z_k))} (xi∑f1(xi))(yj∑f2(yj))(zk∑f3(zk))
边栏推荐
猜你喜欢
Data storage practice based on left-order traversal
Gantt chart is here, project management artifact, template is used directly
02 [Development Server Resource Module]
[Decryption] Can the NFTs created by OpenSea for free appear in my wallet without being chained?
C语言实现简单猜数字游戏
云原生(三十二) | Kubernetes篇之平台存储系统介绍
QT语言文件制作
剑指offer专项突击版第20天
word分栏小记
matlab绘制用颜色表示模值大小的箭头图
随机推荐
shell statement to modify txt file or sh file
Error: Not a signal or slot declaration
OpenGL 工作原理
leetcode 15
Countdown to 2 days|Cloud native Meetup Guangzhou Station, waiting for you!
How to simulate the background API call scene, very detailed!
RAID磁盘阵列
The 2022 EdgeX China Challenge will be grandly opened on August 3
What should I do if the self-incrementing id of online MySQL is exhausted?
Question about #sql shell#, how to solve it?
shell语句修改txt文件或者sh文件
select 标签自定义样式
Go 微服务开发框架 DMicro 的设计思路
C language implements a simple number guessing game
1527. 患某种疾病的患者
PostgreSQL数据库 用navicat 打开表结构的时候报错 cannot update secondarysnapshot during a parallel operation 怎么解决?
软链接引发的物理备份问题
word column notes
LeetCode uses the minimum cost to climb the stairs----dp problem
[ROS] (10) ROS Communication - Service Communication