当前位置:网站首页>数学-求和符号的性质
数学-求和符号的性质
2022-08-05 02:48:00 【Code_LT】
1. 单重求和
∑ i = 1 n f ( x i ) = f ( x 1 ) + f ( x 2 ) + ⋯ + f ( x n ) \sum_{i=1}^nf(x_i)=f(x_1)+f(x_2)+\cdots+f(x_n) i=1∑nf(xi)=f(x1)+f(x2)+⋯+f(xn)
1.1 性质1,提取公因式
若 h ( y , z ) h(y,z) h(y,z)的取值和x无关,则有:
∑ i = 1 n h ( y , z ) f ( x i ) = h ( y , z ) ∑ i = 1 n f ( x i ) \sum_{i=1}^nh(y,z)f(x_i)=h(y,z)\sum_{i=1}^nf(x_i) i=1∑nh(y,z)f(xi)=h(y,z)i=1∑nf(xi)
将变量 i i i写成 x i x_i xi更形象:
∑ x i h ( y , z ) f ( x i ) = h ( y , z ) ∑ x i f ( x i ) \sum_{x_i}h(y,z)f(x_i)=h(y,z)\sum_{x_i}f(x_i) xi∑h(y,z)f(xi)=h(y,z)xi∑f(xi)
上面有了简写,实际上 x i ∈ X x_i \in X xi∈X, X = { x 1 , x 2 , ⋯ , x n } X=\{x_1,x_2,\cdots,x_n\} X={ x1,x2,⋯,xn}:
∑ x i ∈ X 通常可简写为 ∑ x i ,表示累加所有 x i 可取的值 \sum_{x_i \in X}通常可简写为\sum_{x_i},表示累加所有x_i可取的值 xi∈X∑通常可简写为xi∑,表示累加所有xi可取的值
2. 多重求和
以两重求和为例:
∑ i = 1 n ∑ j = 1 m f ( x i ) h ( y j ) = f ( x 1 ) ∑ j = 1 m h ( y j ) + f ( x 2 ) ∑ j = 1 m h ( y j ) + ⋯ + f ( x n ) ∑ j = 1 m h ( y j ) = 再展开就省略不写了 \sum_{i=1}^n\sum_{j=1}^mf(x_i)h(y_j)=f(x_1)\sum_{j=1}^mh(y_j)+f(x_2)\sum_{j=1}^mh(y_j)+\cdots+f(x_n)\sum_{j=1}^mh(y_j)=再展开就省略不写了 i=1∑nj=1∑mf(xi)h(yj)=f(x1)j=1∑mh(yj)+f(x2)j=1∑mh(yj)+⋯+f(xn)j=1∑mh(yj)=再展开就省略不写了
2.1 性质1,符号顺序可换
两重:
∑ i = 1 n ∑ j = 1 m f ( x i ) h ( y j ) = ∑ j = 1 m ∑ i = 1 n f ( x i ) h ( y j ) \sum_{i=1}^n{\color{red} \sum_{j=1}^m}f(x_i)h(y_j)={\color{red} \sum_{j=1}^m}\sum_{i=1}^nf(x_i)h(y_j) i=1∑nj=1∑mf(xi)h(yj)=j=1∑mi=1∑nf(xi)h(yj)
注意,当某个求和的范围受另一个变量限制时,符号交换律就不适用了,如:
∑ i = 1 n ∑ j = 1 i f ( x i ) h ( y j ) ≠ ∑ j = 1 i ∑ i = 1 n f ( x i ) h ( y j ) \sum_{i=1}^n\sum_{j=1}^{\color{red} i}f(x_i)h(y_j) {\color{red} \neq}\sum_{j=1}^ {\color{red} i}\sum_{i=1}^nf(x_i)h(y_j) i=1∑nj=1∑if(xi)h(yj)=j=1∑ii=1∑nf(xi)h(yj)
多重:
∑ x i ∑ y j ∑ z k f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) = ∑ z k ∑ y j ∑ x i f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f_1(x_i)f_2(y_j)f_3(z_k)=\sum_{z_k}\sum_{y_j}\sum_{x_i}f_1(x_i)f_2(y_j)f_3(z_k) xi∑yj∑zk∑f1(xi)f2(yj)f3(zk)=zk∑yj∑xi∑f1(xi)f2(yj)f3(zk)
f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) f_1(x_i)f_2(y_j)f_3(z_k) f1(xi)f2(yj)f3(zk)可看做一个函数 f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f(x1,x2,x3),则得到更通用的形式:
∑ x i ∑ y j ∑ z k f ( x 1 , x 2 , x 3 ) = ∑ z k ∑ y j ∑ x i f ( x 1 , x 2 , x 3 ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f(x_1,x_2,x_3)=\sum_{z_k}\sum_{y_j}\sum_{x_i}f(x_1,x_2,x_3) xi∑yj∑zk∑f(x1,x2,x3)=zk∑yj∑xi∑f(x1,x2,x3)
牢记可调换的前提:x,y,z的取值范围,相互没有影响。
2.1 性质2,符号可分别求
有时候,为了求解的方便,我们并不希望函数 f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f(x1,x2,x3)写成一个整体,而是拆开后分别求值。
∑ x i ∑ y j ∑ z k f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) = ∑ x i f 1 ( x i ) ∑ y j f 2 ( y j ) ∑ z k f 3 ( z k ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f_1(x_i)f_2(y_j)f_3(z_k)=\sum_{x_i}f_1(x_i)\sum_{y_j}f_2(y_j)\sum_{z_k}f_3(z_k) xi∑yj∑zk∑f1(xi)f2(yj)f3(zk)=xi∑f1(xi)yj∑f2(yj)zk∑f3(zk)
x,y,z的取值范围也要满足相互没有影响,可通过展开计算进行简单的证明。
上述性质的好处在于,可将复杂的问题分成三个部分分别计算,再求乘积。
( ∑ x i f 1 ( x i ) ) ( ∑ y j f 2 ( y j ) ) ( ∑ z k f 3 ( z k ) ) {\color{red}(\sum_{x_i}f_1(x_i))} {\color{green}(\sum_{y_j}f_2(y_j))} {\color{blue}(\sum_{z_k}f_3(z_k))} (xi∑f1(xi))(yj∑f2(yj))(zk∑f3(zk))
边栏推荐
- 02 [Development Server Resource Module]
- In 2022, you still can't "low code"?Data science can also play with Low-Code!
- Question about #sql shell#, how to solve it?
- [C language] Detailed explanation of stacks and queues (define, destroy, and data operations)
- Study Notes-----Left-biased Tree
- View handler 踩坑记录
- How to transfer a single node of Youxuan database to a cluster
- Beidou no. 3 short message terminal high slope in open-pit mine monitoring programme
- (十一)元类
- 基于左序遍历的数据存储实践
猜你喜欢

Apache DolphinScheduler, a new generation of distributed workflow task scheduling platform in practice - Medium

The 2022 EdgeX China Challenge will be grandly opened on August 3

数据增强Mixup原理与代码解读

甘特图来啦,项目管理神器,模板直接用

正则表达式,匹配中间的某一段字符串

Common hardware delays

北斗三号短报文终端露天矿山高边坡监测方案

金仓数据库如何验证安装文件平台正确性

RAID磁盘阵列

dmp(dump)转储文件
随机推荐
lua learning
C student management system Insert the student node at the specified location
QStyle平台风格
(11) Metaclass
The problem of lack of dynamic library "libtinfo.so.5" in ksql application under UOS system
Access Characteristics of Constructor under Inheritance Relationship
QT language file production
LeetCode uses the minimum cost to climb the stairs----dp problem
甘特图来啦,项目管理神器,模板直接用
private封装
Snapback - same tree
Matlab drawing 3
How Jin Cang database correctness verification platform installation file
基于左序遍历的数据存储实践
1873. The special bonus calculation
程序员的七夕浪漫时刻
语法基础(变量、输入输出、表达式与顺序语句)
Error: Not a signal or slot declaration
解决端口占用问题 Port xxxx was already in use
How to solve the error cannot update secondary snapshot during a parallel operation when the PostgreSQL database uses navicat to open the table structure?