当前位置:网站首页>数学-求和符号的性质
数学-求和符号的性质
2022-08-05 02:48:00 【Code_LT】
1. 单重求和
∑ i = 1 n f ( x i ) = f ( x 1 ) + f ( x 2 ) + ⋯ + f ( x n ) \sum_{i=1}^nf(x_i)=f(x_1)+f(x_2)+\cdots+f(x_n) i=1∑nf(xi)=f(x1)+f(x2)+⋯+f(xn)
1.1 性质1,提取公因式
若 h ( y , z ) h(y,z) h(y,z)的取值和x无关,则有:
∑ i = 1 n h ( y , z ) f ( x i ) = h ( y , z ) ∑ i = 1 n f ( x i ) \sum_{i=1}^nh(y,z)f(x_i)=h(y,z)\sum_{i=1}^nf(x_i) i=1∑nh(y,z)f(xi)=h(y,z)i=1∑nf(xi)
将变量 i i i写成 x i x_i xi更形象:
∑ x i h ( y , z ) f ( x i ) = h ( y , z ) ∑ x i f ( x i ) \sum_{x_i}h(y,z)f(x_i)=h(y,z)\sum_{x_i}f(x_i) xi∑h(y,z)f(xi)=h(y,z)xi∑f(xi)
上面有了简写,实际上 x i ∈ X x_i \in X xi∈X, X = { x 1 , x 2 , ⋯ , x n } X=\{x_1,x_2,\cdots,x_n\} X={ x1,x2,⋯,xn}:
∑ x i ∈ X 通常可简写为 ∑ x i ,表示累加所有 x i 可取的值 \sum_{x_i \in X}通常可简写为\sum_{x_i},表示累加所有x_i可取的值 xi∈X∑通常可简写为xi∑,表示累加所有xi可取的值
2. 多重求和
以两重求和为例:
∑ i = 1 n ∑ j = 1 m f ( x i ) h ( y j ) = f ( x 1 ) ∑ j = 1 m h ( y j ) + f ( x 2 ) ∑ j = 1 m h ( y j ) + ⋯ + f ( x n ) ∑ j = 1 m h ( y j ) = 再展开就省略不写了 \sum_{i=1}^n\sum_{j=1}^mf(x_i)h(y_j)=f(x_1)\sum_{j=1}^mh(y_j)+f(x_2)\sum_{j=1}^mh(y_j)+\cdots+f(x_n)\sum_{j=1}^mh(y_j)=再展开就省略不写了 i=1∑nj=1∑mf(xi)h(yj)=f(x1)j=1∑mh(yj)+f(x2)j=1∑mh(yj)+⋯+f(xn)j=1∑mh(yj)=再展开就省略不写了
2.1 性质1,符号顺序可换
两重:
∑ i = 1 n ∑ j = 1 m f ( x i ) h ( y j ) = ∑ j = 1 m ∑ i = 1 n f ( x i ) h ( y j ) \sum_{i=1}^n{\color{red} \sum_{j=1}^m}f(x_i)h(y_j)={\color{red} \sum_{j=1}^m}\sum_{i=1}^nf(x_i)h(y_j) i=1∑nj=1∑mf(xi)h(yj)=j=1∑mi=1∑nf(xi)h(yj)
注意,当某个求和的范围受另一个变量限制时,符号交换律就不适用了,如:
∑ i = 1 n ∑ j = 1 i f ( x i ) h ( y j ) ≠ ∑ j = 1 i ∑ i = 1 n f ( x i ) h ( y j ) \sum_{i=1}^n\sum_{j=1}^{\color{red} i}f(x_i)h(y_j) {\color{red} \neq}\sum_{j=1}^ {\color{red} i}\sum_{i=1}^nf(x_i)h(y_j) i=1∑nj=1∑if(xi)h(yj)=j=1∑ii=1∑nf(xi)h(yj)
多重:
∑ x i ∑ y j ∑ z k f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) = ∑ z k ∑ y j ∑ x i f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f_1(x_i)f_2(y_j)f_3(z_k)=\sum_{z_k}\sum_{y_j}\sum_{x_i}f_1(x_i)f_2(y_j)f_3(z_k) xi∑yj∑zk∑f1(xi)f2(yj)f3(zk)=zk∑yj∑xi∑f1(xi)f2(yj)f3(zk)
f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) f_1(x_i)f_2(y_j)f_3(z_k) f1(xi)f2(yj)f3(zk)可看做一个函数 f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f(x1,x2,x3),则得到更通用的形式:
∑ x i ∑ y j ∑ z k f ( x 1 , x 2 , x 3 ) = ∑ z k ∑ y j ∑ x i f ( x 1 , x 2 , x 3 ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f(x_1,x_2,x_3)=\sum_{z_k}\sum_{y_j}\sum_{x_i}f(x_1,x_2,x_3) xi∑yj∑zk∑f(x1,x2,x3)=zk∑yj∑xi∑f(x1,x2,x3)
牢记可调换的前提:x,y,z的取值范围,相互没有影响。
2.1 性质2,符号可分别求
有时候,为了求解的方便,我们并不希望函数 f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f(x1,x2,x3)写成一个整体,而是拆开后分别求值。
∑ x i ∑ y j ∑ z k f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) = ∑ x i f 1 ( x i ) ∑ y j f 2 ( y j ) ∑ z k f 3 ( z k ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f_1(x_i)f_2(y_j)f_3(z_k)=\sum_{x_i}f_1(x_i)\sum_{y_j}f_2(y_j)\sum_{z_k}f_3(z_k) xi∑yj∑zk∑f1(xi)f2(yj)f3(zk)=xi∑f1(xi)yj∑f2(yj)zk∑f3(zk)
x,y,z的取值范围也要满足相互没有影响,可通过展开计算进行简单的证明。
上述性质的好处在于,可将复杂的问题分成三个部分分别计算,再求乘积。
( ∑ x i f 1 ( x i ) ) ( ∑ y j f 2 ( y j ) ) ( ∑ z k f 3 ( z k ) ) {\color{red}(\sum_{x_i}f_1(x_i))} {\color{green}(\sum_{y_j}f_2(y_j))} {\color{blue}(\sum_{z_k}f_3(z_k))} (xi∑f1(xi))(yj∑f2(yj))(zk∑f3(zk))
边栏推荐
- Error: Not a signal or slot declaration
- 开源协议说明LGPL
- 【Daily Training】1403. Minimum Subsequence in Non-Increasing Order
- 1484. Sell Products by Date
- Unleashing the engine of technological innovation, Intel joins hands with ecological partners to promote the vigorous development of smart retail
- DAY23: Command Execution & Code Execution Vulnerability
- How to solve the error cannot update secondary snapshot during a parallel operation when the PostgreSQL database uses navicat to open the table structure?
- word分栏小记
- mysql tree structure query problem
- Industry case | insurance companies of the world's top 500 construction standards can be used to drive the business analysis system
猜你喜欢

dmp (dump) dump file
![[ROS] (10) ROS Communication - Service Communication](/img/4d/4657f24bd7809abb4bdc4b418076f7.png)
[ROS] (10) ROS Communication - Service Communication

Multithreading (2)

DAY22: sqli-labs shooting range clearance wp (Less01~~Less20)

DAY23: Command Execution & Code Execution Vulnerability

A small tool to transfer files using QR code - QFileTrans 1.2.0.1

【解密】OpenSea免费创造的NFT都没上链竟能出现在我的钱包里?

Everyone in China said data, you need to focus on core characteristic is what?

C语言实现简单猜数字游戏

RAID disk array
随机推荐
Semi-Decentralized Federated Learning for Cooperative D2D Local Model Aggregation
基于左序遍历的数据存储实践
How to solve the error cannot update secondary snapshot during a parallel operation when the PostgreSQL database uses navicat to open the table structure?
Unleashing the engine of technological innovation, Intel joins hands with ecological partners to promote the vigorous development of smart retail
Images using redis cache Linux master-slave synchronization server hard drive full of moved to the new directory which points to be modified
lua learning
云原生(三十二) | Kubernetes篇之平台存储系统介绍
QT语言文件制作
The design idea of DMicro, the Go microservice development framework
HDU 1114:Piggy-Bank ← 完全背包问题
PostgreSQL数据库 用navicat 打开表结构的时候报错 cannot update secondarysnapshot during a parallel operation 怎么解决?
甘特图来啦,项目管理神器,模板直接用
nodeJs--encapsulate routing
02 [Development Server Resource Module]
Question about #sql shell#, how to solve it?
Industry case | insurance companies of the world's top 500 construction standards can be used to drive the business analysis system
1667. 修复表中的名字
mysql can't Execute, please solve it
[LeetCode Brush Questions] - Sum of Numbers topic (more topics to be added)
VSCode Change Default Terminal 如何修改vscode的默认terminal