当前位置:网站首页>Pytorch框架学习记录4——数据集的使用(torchvision.dataset)
Pytorch框架学习记录4——数据集的使用(torchvision.dataset)
2022-07-30 03:54:00 【柚子Roo】
Pytorch框架学习记录4——数据集的使用(torchvision.dataset)
1. 数据集
在pytorch官网中我们可以看到pytorch自身所配有的数据集的情况,以及该数据集的类型、使用方法等。在这里,我们选择数据集较小的CIFAR10作为我们的示例数据集。
该数据集的调用和使用使用代码如下:
torchvision.datasets.CIFAR10(root: str, train: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False)
参数说明:
- root ( string ) – 数据集的根目录,
cifar-10-batches-py如果下载设置为 True,则该目录存在或将保存到该目录。 - train ( bool,optional ) – 如果为真,则从训练集创建数据集,否则从测试集创建。
- transform ( callable,optional ) – 一个函数/转换,它接受 PIL 图像并返回转换后的版本。例如,
transforms.RandomCrop - target_transform ( callable,optional ) – 接收目标并对其进行转换的函数/转换。
- download ( bool,optional ) – 如果为 true,则从 Internet 下载数据集并将其放在根目录中。如果数据集已经下载,则不会再次下载。
2. 使用实例
下载CIFAR10数据集后,将其类型转换为tensor类型,并在tensorboard中进行展示。
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import transforms
dataset_transform = transforms.Compose([
transforms.ToTensor()
])
train_set = torchvision.datasets.CIFAR10(root='./dataset', train=True, transform=dataset_transform, download=True)
test_set = torchvision.datasets.CIFAR10(root='./dataset', train=False, transform=dataset_transform, download=True)
writer = SummaryWriter('logs')
for i in range(10):
img, label = train_set[i]
writer.add_image('train10', img, i)
writer.close()
此外,还可以直接通过链接使用浏览器下载,下载完毕后,在当前目录下也命名一个dataset文件夹并放入,上述代码不做任何改变,会自动将手动下载的数据集进行解压和修正。

边栏推荐
- OpenFeign realize load balance
- Mini Program Graduation Works WeChat Second-hand Trading Mini Program Graduation Design Finished Works (3) Background Functions
- Nacos installation and deployment
- vscode 调试和远程
- curl命令获取外网ip
- Uptime Monitoring: How to Ensure Network Device Uptime
- 新型LaaS协议Elephant Swap给ePLATO提供可持续溢价空间
- spicy (two) unit hooks
- [Switch] Protocol-Oriented Programming in Swift: Introduction
- Mini Program Graduation Works WeChat Points Mall Mini Program Graduation Design Finished Work (7) Interim Inspection Report
猜你喜欢

Nacos service registration and discovery

Process priority nice

Starlight does not ask passers-by!The young lady on the Wuhan campus successfully switched to software testing in three months and received a salary of 9k+13!

OpenFeign realize load balance

骁龙7系芯片表现如何?Reno8 Pro佐证新一代神U

Nacos服务注册与发现

ospf 综合实验(重发布,特殊区域)

高并发框架 Disruptor

Nacos achieves high availability

(redistribute, special comprehensive experiment ospf area)
随机推荐
2022-07-29 Group 4 Self-cultivation class study notes (every day)
Mini Program Graduation Works WeChat Points Mall Mini Program Graduation Design Finished Product (2) Mini Program Function
小程序毕设作品之微信积分商城小程序毕业设计成品(4)开题报告
vscode debugging and remote
SDL player in action
Starlight does not ask passers-by!The young lady on the Wuhan campus successfully switched to software testing in three months and received a salary of 9k+13!
Wechat second-hand transaction small program graduation design finished product (1) Development overview
小程序毕设作品之微信积分商城小程序毕业设计成品(8)毕业设计论文模板
After 5 years of Ali internship interview~
Mini Program Graduation Works WeChat Second-hand Trading Mini Program Graduation Design Finished Works (6) Question Opening Reply PPT
Nacos Configuration Center
Eureka注册中心
Alibaba search new product data API by keyword
Public chains challenging the "Impossible Triangle"
第51篇-知乎请求头参数分析【2022-07-28】
Resampling a uniformly sampled signal
Nacos 安装与部署
2022-07-29 第四小组 修身课 学习笔记(every day)
Basic introduction to protect the network operations
TCP拥塞控制技术 与BBR的加速原理