当前位置:网站首页>[advanced mathematics] elementary transformation of matrix and determinant
[advanced mathematics] elementary transformation of matrix and determinant
2022-07-23 09:05:00 【The wind holy】
Elementary transformation of matrix and determinant
In Linear Algebra , Elementary transformation is the most important operation , However, the elementary transformation of matrix and determinant are often confused , The purpose of this paper is to clarify these concepts : matrix 、 determinant 、 Elementary transformation 、 Elementary matrix 、 Elementary transformation of matrix 、 Elementary transformation of determinant .
One 、 Matrices and determinants
- The matrix is a Number table , Usually enclosed in brackets :
A 3 × 4 = [ 1 0 0 1 0 2 0 2 0 0 3 3 ] \mathbf A_{3\times4}=\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 3 & 3 \end{bmatrix} A3×4=⎣⎡100020003123⎦⎤
There's a 3 That's ok 4 Columns of the matrix .
- Determinant is a Count , Through to Matrix The number obtained by operation :
d e t A = ∣ 1 0 0 0 1 0 0 0 2 ∣ = 2 det \mathbf A=\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix} = 2 detA=∣∣100010002∣∣=2
The number of rows and columns of a matrix may not be equal , The number of rows and columns of a row column formula must be equal .
Two 、 Elementary transformation and elementary matrix
The so-called elementary transformation is the three most basic transformations of matrix , Elementary matrix is the matrix representation corresponding to these three transformations .
Elementary transformation is divided into row elementary transformation and column elementary transformation . The difference between the two lies in the matrix being calculated A \mathbf A A Left or right .
Three elementary transformations , And the corresponding elementary matrix :
In exchange for : take i Row sum j Line exchange , The corresponding elementary matrix is the unit matrix i Row sum j Line exchange
E i j = [ 1 0 0 0 0 1 0 1 0 ] \mathbf E_{ij} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} Eij=⎣⎡100001010⎦⎤multiplier : take i Multiply each number of rows by c,
E i ( c ) = [ 1 0 0 0 c 0 0 0 1 ] \mathbf E_{i}(c) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & 1 \end{bmatrix} Ei(c)=⎣⎡1000c0001⎦⎤Multiply and add : take i Multiply each number of rows by c Add to j That's ok ,
E i j ( c ) = [ 1 0 0 0 1 0 0 c 1 ] \mathbf E_{ij}(c)=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & c & 1 \end{bmatrix} Eij(c)=⎣⎡10001c001⎦⎤
Now let's demonstrate :
E i j A = [ 1 0 0 0 0 1 0 1 0 ] × [ 1 0 0 1 0 2 0 2 0 0 3 3 ] = [ 1 0 0 1 0 0 3 3 0 2 0 2 ] \mathbf E_{ij} \mathbf A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 3 & 3 \\ 0 & 2 & 0 & 2 \end{bmatrix} EijA=⎣⎡100001010⎦⎤×⎣⎡100020003123⎦⎤=⎣⎡100002030132⎦⎤
If the elementary matrix is placed in A To the right of is the column transformation .
3、 ... and 、 Elementary transformation of matrix and determinant
1. The elementary transformation of matrix is to keep Equivalence relation
2. The elementary transformation of determinant is to keep Equivalence relations
The elementary transformation method of matrix has been made clear above .
Elementary transformation rules of determinant :
- In exchange for : d e t E i j A = − d e t A det\; \mathbf E_{ij} \mathbf A = -det \; \mathbf A detEijA=−detA
- multiplier : d e t E i ( c ) A = c d e t A det \; \mathbf E_i(c) \mathbf A =c \, det \mathbf \; \mathbf A detEi(c)A=cdetA
- Multiply and add : d e t E i j ( c ) A = d e t A det \; \mathbf E_{ij}(c) \mathbf A = det \mathbf \; \mathbf A detEij(c)A=detA
Four 、 Number multiplication and multiple multiplication
- For matrices :
Number multiplication : k A k \mathbf A kA , the A \mathbf A A Each element in is multiplied by k
multiplier : E i ( c ) A \mathbf E_{i}(c) \mathbf A Ei(c)A, the A \mathbf A A Of the i Multiply each element of the row by c
- For determinants :
Number multiplication : d e t ( k A n × n ) = k n d e t ( A ) det (kA_{n\times n}) = k^n\ det(A) det(kAn×n)=kn det(A)
multiplier : d e t ( E i ( c ) A n × n ) = k d e t ( A ) det (\mathbf E_{i}(c) A_{n\times n}) = k\ det(A) det(Ei(c)An×n)=k det(A)
边栏推荐
- [ctfshow-web入门]SSRF
- User defined type details: structure, enumeration, union
- How many of the 50 classic computer network interview questions can you answer? (top)
- BGP实验
- TCP数据传输与性能
- SQL Server database design -- select statement
- What is the experience of writing concurrent tool classes (semaphore, cyclicbarrier, countdownlatch) by yourself in line 30?
- DALSA智能相机BOA Spot与西门子S7-1200 Profinet通讯
- Idea export jar package to JMeter
- SIP账号的作用-告诉你什么是SIP线路
猜你喜欢

深度讲解CAS,面试实践必备

触发器基础知识(下)

PMP一手资料、一手资讯获取

Three schemes to realize finclip wechat authorized login

TCP连接原理

全新 IDEA 2022.2 正式发布,新特性很NICE
![[concurrent programming] Chapter 2: go deep into the reentrantlock lock lock from the core source code](/img/df/f29eed667c2a7dc02d93ac3f424198.png)
[concurrent programming] Chapter 2: go deep into the reentrantlock lock lock from the core source code

How many of the 50 classic computer network interview questions can you answer? (II)
![[hero planet July training leetcode problem solving daily] the 22nd day of the orderly gathering](/img/db/aaff170119727c0c9a02c4c3a3d8d7.png)
[hero planet July training leetcode problem solving daily] the 22nd day of the orderly gathering

TCP数据传输与性能
随机推荐
15000 words to summarize all features of ES6
BGP federal experiment
股票开户网上开户安全吗,银河证券怎么样
自定义类型详解:结构体,枚举,联合
[openvx] VX for basic use of objects_ reference
NodeJS 基于 Dapr 构建云原生微服务应用,从 0 到 1 快速上手指南
How many of the 50 classic computer network interview questions can you answer? (III)
SQL Server database design -- select statement 2
Flutter 3.0
Unity3d learning note 9 - loading textures
基于JSP实现OA办公系统
Talk about HART Protocol
Developed an app that can run small programs with fluent
[unity project practice] FSM finite state machine
PostgreSQL and Navicat: the backbone of the database industry
Number theory -- division and blocking, common classic examples.
.NET开发云原生应用,你只差给自己加个油
超全PMP备考文档汇总
关系表达式 大于> 小于< 全等=== Nan isNan() 逻辑运算符 双感叹号!! && || % ++ -- 短路计算 赋值表达式 快捷运算符 顺序 闰年
SIP账号的作用-告诉你什么是SIP线路