当前位置:网站首页>[combinatorics] Introduction to Combinatorics (combinatorial thought 2: mathematical induction | mathematical induction promotion | multiple induction thought)
[combinatorics] Introduction to Combinatorics (combinatorial thought 2: mathematical induction | mathematical induction promotion | multiple induction thought)
2022-07-03 09:38:00 【Programmer community】
List of articles
- One 、 Combination thought 2 : Mathematical induction
- Two 、 Generalization of mathematical induction
- 3、 ... and 、 Multiple inductive thoughts
One 、 Combination thought 2 : Mathematical induction
Mathematical induction describe A proposition related to natural numbers
P
(
n
)
P(n)
P(n) ,
According to different questions , Set up
n
n
n The minimum value , Usually from
0
0
0 Start ,
1. The proof is divided into the following two steps :
( 1 ) Inductive basis : First prove that Inductive basis , If it is proved that
P
(
0
)
P(0)
P(0) It's true ;
( 2 ) Induction steps : according to Types of mathematical induction , Prove in different ways , Here you are First, mathematical induction and Second, mathematical induction Two kinds of induction ;
2. Mathematical induction :
( 1 ) First, mathematical induction : from
P
(
n
)
P(n)
P(n) deduction
P
(
n
+
1
)
P(n + 1)
P(n+1)
P
(
0
)
P(0)
P(0) It's true
hypothesis
P
(
n
)
P(n)
P(n) It's true , prove
P
(
n
+
1
)
P(n + 1)
P(n+1) It's true
( 2 ) Second, mathematical induction : All less than
n
n
n Of
P
(
0
)
,
P
(
1
)
,
⋯
,
P
(
n
−
1
)
P(0) , P(1), \cdots , P(n-1)
P(0),P(1),⋯,P(n−1) It's all true , deduction
P
(
n
)
P(n)
P(n) It's true ;
P
(
0
)
P(0)
P(0) It's true
Assume that all are less than
n
n
n The natural number of
k
k
k , proposition
P
(
k
)
P(k)
P(k) It's all true , namely
P
(
0
)
,
P
(
1
)
,
⋯
,
P
(
n
−
1
)
P(0) , P(1), \cdots , P(n-1)
P(0),P(1),⋯,P(n−1) It's all true , deduction
P
(
n
)
P(n)
P(n) It's true ;
Symbolized as :
P
(
0
)
∧
P
(
1
)
∧
⋯
∧
P
(
n
−
1
)
→
P
(
n
)
P(0) \land P(1) \land \cdots \land P(n-1) \to P(n)
P(0)∧P(1)∧⋯∧P(n−1)→P(n)
Two 、 Generalization of mathematical induction
Mathematical induction can be extended , There may be Two problems of natural numbers , therefore The corresponding proposition is two natural numbers
P
(
m
,
n
)
P(m,n)
P(m,n) , The previous proposition is a natural number
P
(
n
)
P(n)
P(n) ;
1. Prove the proposition of two natural numbers
P
(
m
,
n
)
P(m,n)
P(m,n)
For this
m
,
n
m,n
m,n Two natural numbers ,
Any given natural number
m
m
m , namely
m
m
m It can be a natural number of any size , Yes
n
n
n inductive ;
or
Any given natural number
n
n
n , namely
n
n
n It can be a natural number of any size , Yes
m
m
m inductive ;
Specify the value of a natural number first , Summarize another natural number ;
The induction of a natural number , The traditional mathematical induction method is used for induction and proof ;
2. Multiple induction :
( 1 ) Inductive basis : Set up
P
(
m
,
n
)
P(m,n)
P(m,n) One of the natural numbers is
0
0
0 , Another natural number is any size ;
P
(
0
,
n
′
)
P(0, n')
P(0,n′) Is the basis of induction ,
m
=
0
m= 0
m=0 ,
n
′
n'
n′ Is any size ;
P
(
m
′
,
0
)
P(m', 0)
P(m′,0) Is the basis of induction ,
n
=
0
n= 0
n=0 ,
m
′
m'
m′ Is any size ;
First prove that the above inductive basis is true ;
( 2 ) Induction steps :
hypothesis
P
(
m
−
1
,
n
)
P(m-1, n)
P(m−1,n) ,
P
(
m
,
n
−
1
)
P(m , n-1)
P(m,n−1) It's true , prove
P
(
m
,
n
)
P(m, n)
P(m,n) It's true ;
3、 ... and 、 Multiple inductive thoughts
Plane coordinate system :
If
x
=
0
x = 0
x=0 When the parameter is true , namely
y
y
y On axis Dot represents All parameters are true ;
If
y
=
0
y = 0
y=0 When the parameter is true , namely
x
x
x On axis Dot represents All parameters are true ;
The points on the above two coordinate axes are equivalent to the basis of induction ;
With the basis of induction , Use the point on the coordinate axis , The parameter represented by the point in the middle part of the derived coordinate system is true ;
Two points are true , Prove more than these two points
1
1
1 The point of is true , testify ,
hypothesis
P
(
m
−
1
,
n
)
P(m-1, n)
P(m−1,n) ,
P
(
m
,
n
−
1
)
P(m , n-1)
P(m,n−1) prove
P
(
m
,
n
)
P(m, n)
P(m,n) It's true
prove
P
(
1
,
1
)
P(1, 1)
P(1,1) It's true :
P
(
1
−
1
,
1
)
,
P
(
1
,
1
−
1
)
P(1 - 1 , 1) , P(1 , 1 - 1)
P(1−1,1),P(1,1−1) It's true , namely
P
(
0
,
1
)
,
P
(
1
,
0
)
P(0,1) , P(1, 0)
P(0,1),P(1,0) It's true ,
Can be derived
P
(
1
,
1
)
P(1,1)
P(1,1) It's true ;
At this time in
(
0
,
2
)
,
(
1
,
1
)
,
(
2
,
0
)
(0,2) , (1,1) , (2, 0)
(0,2),(1,1),(2,0) The dots on the slash are all true , That is, the dot in the red box above ;
According to the point on the slash above, it can be proved Next jump on the slash The point of
(
0
,
3
)
,
(
1
,
2
)
,
(
2
,
1
)
,
(
3
,
0
)
(0, 3) , (1, 2) , (2, 1) , (3, 0)
(0,3),(1,2),(2,1),(3,0) The dot on the slash is true ;
At this time, after the proof , The dots in the red box above are all true ;
Finally prove all the slashes ( top left corner -> The lower right corner ) All points on the are true ;
边栏推荐
- LeetCode每日一题(2090. K Radius Subarray Averages)
- Integrated use of interlij idea and sonarqube
- Global KYC service provider advance AI in vivo detection products have passed ISO international safety certification, and the product capability has reached a new level
- Idea uses the MVN command to package and report an error, which is not available
- Spark structured stream writing Hudi practice
- ERROR: certificate common name “www.mysql.com” doesn’t match requested host name “137.254.60.11”.
- Spark 集群安装与部署
- numpy. Reshape() and resize() functions
- Leetcode daily question (2212. maximum points in an archery competition)
- Leetcode daily question (1162. as far from land as possible)
猜你喜欢
Spark 概述
Arduino handles JSON data, arduinojson assistant
Difference of EOF
[CSDN]C1训练题解析_第三部分_JS基础
解决Editor.md上传图片获取不到图片地址问题
LeetCode每日一题(1162. As Far from Land as Possible)
Error output redirection
Nodemcu-esp8266 development (vscode+platformio+arduino framework): Part 5 --blinker_ MIOT_ MULTI_ Outside (lighting technology app + Xiaoai classmate control socket multiple jacks)
顺利毕业[2]-学生健康管理系统 功能开发中。。。
Modify idea code
随机推荐
ERROR: certificate common name “www.mysql.com” doesn’t match requested host name “137.254.60.11”.
一款开源的Markdown转富文本编辑器的实现原理剖析
Leetcode daily question (968. binary tree cameras)
Nodemcu-esp8266 development (vscode+platformio+arduino framework): Part 3 --blinker_ MIOT_ Light (lighting technology app control + Xiaoai classmate control)
LeetCode每日一题(985. Sum of Even Numbers After Queries)
Spark structured stream writing Hudi practice
Flink learning notes (10) Flink fault tolerance mechanism
Esp32 at command does not respond
WARNING: You are using pip version 21.3.1; however, version 22.0.3 is available. Prompt to upgrade pip
Send mail using WP mail SMTP plug-in
Leetcode daily question (2232. minimize result by addressing parents to expression)
PowerDesigner does not display table fields, only displays table names and references, which can be modified synchronously
Hudi data management and storage overview
Leetcode daily question (931. minimum falling path sum)
Convert IP address to int
从0开始使用pnpm构建一个Monorepo方式管理的demo
Hudi学习笔记(三) 核心概念剖析
用Redis实现分布式锁
QT qstring:: number apply base conversion
LeetCode每日一题(745. Prefix and Suffix Search)