当前位置:网站首页>20211018 一些特殊矩阵
20211018 一些特殊矩阵
2022-06-13 08:55:00 【我起个什么名字呢】
酉矩阵(Unitary Matrix): A H A = A A H = I A^HA=AA^H=I AHA=AAH=I,则称酉矩阵(幺正矩阵、么正矩阵)。
正交矩阵:如果酉矩阵的元素都是实数,叫做正交矩阵(正交矩阵都是正数)。 A T A = A A T = I A^TA=AA^T=I ATA=AAT=I。
实对称矩阵:所有元素实数, A T = A A^T=A AT=A。
实反对称矩阵:所有元素实数, A T = − A A^T=-A AT=−A。
厄米特矩阵(Hermitian Matrix):对角线元素实数,非对角线可实可虚, A H = A A^H=A AH=A。特征值一定是实数。
正规矩阵(Normal Matrix): A T A = A A T A^TA=AA^T ATA=AAT,则称为正规矩阵。
任意正规矩阵都可在经过一个酉变换后变为对角矩阵,反过来所有可在经过一个酉变换后变为对角矩阵的矩阵都是正规矩阵。
酉变换:
Schur定理:定理 1.41 (1)设 A ∈ C n × n \boldsymbol{A} \in \mathbf{C}^{n \times n} A∈Cn×n 的特征值为 λ 1 , ⋅ λ 2 , ⋯ , λ n \lambda_{1}, \cdot \lambda_{2}, \cdots, \lambda_{n} λ1,⋅λ2,⋯,λn, 则存 在酉矩阵 P \boldsymbol{P} P,使得
P − 1 A P = P H A P = [ λ 1 ∗ ⋯ ∗ λ 2 ⋱ ⋮ ⋱ ∗ λ n ] \boldsymbol{P}^{-1} \boldsymbol{A P}=\boldsymbol{P}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{P}=\left[\begin{array}{lllc} \lambda_{1} & * & \cdots & * \\ & \lambda_{2} & \ddots & \vdots \\ & & \ddots & * \\ & & & \lambda_{n} \end{array}\right] P−1AP=PHAP=⎣⎢⎢⎢⎡λ1∗λ2⋯⋱⋱∗⋮∗λn⎦⎥⎥⎥⎤
(2)设 A ∈ R n × n \boldsymbol{A} \in \mathbf{R}^{n \times n} A∈Rn×n 的特征值为 λ 1 , λ 2 , ⋯ , λ n \lambda_{1}, \lambda_{2}, \cdots, \lambda_{n} λ1,λ2,⋯,λn, 且 λ i ∈ R ( i = 1 \lambda_{i} \in \mathbf{R}(i=1 λi∈R(i=1, 2 , ⋯ , n ) 2, \cdots, n) 2,⋯,n), 则存在正交矩阵 Q Q Q, 使得
Q − 1 A Q = Q T A Q = [ λ 1 ∗ ⋯ ∗ λ 2 ⋱ ⋮ ⋱ ∗ λ n ] \boldsymbol{Q}^{-1} \boldsymbol{A} \boldsymbol{Q}=\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{Q}=\left[\begin{array}{lllc} \lambda_{1} & * & \cdots & * \\ & \lambda_{2} & \ddots & \vdots \\ & & \ddots & * \\ & & & \lambda_{n} \end{array}\right] Q−1AQ=QTAQ=⎣⎢⎢⎢⎡λ1∗λ2⋯⋱⋱∗⋮∗λn⎦⎥⎥⎥⎤
定理 1.42 (1)设 A ∈ C n × n \boldsymbol{A} \in \mathbf{C}^{n \times n} A∈Cn×n, 则 A \boldsymbol{A} A 酉相似于对角矩阵的充要 条件是 A \boldsymbol{A} A 为正规矩阵;
(2)设 A ∈ R n × n \boldsymbol{A} \in \mathbf{R}^{n \times n} A∈Rn×n, 且 A \boldsymbol{A} A 的特征值都是实数,则 A \boldsymbol{A} A 正交相似于对 角矩阵的充要条件是 A \boldsymbol{A} A 为正规矩阵.
边栏推荐
- ES6 module import / export summary
- Object array de encapsulation
- 關於RSA加密解密原理
- 1.初步认识express
- Pytorch model tuning - only some layers of the pre training model are loaded
- An error CV2 is reported when the picture is converted to grayscale cvtColor(img, cv2.COLOR_BGR2GRAY)
- JS obtain geographic location information according to longitude and latitude and mark it on the map
- About RSA encryption and decryption principle
- Basic use of cesium, including loading images, terrain, models, vector data, etc
- Redirect vulnerability analysis of network security vulnerability analysis
猜你喜欢

ADT Google browser plug-in ad Terminator

Jfinal and swagger integration

Mapbox usage, including drawing, loading, modifying, deleting points and faces, displaying pop ups, etc

2021-04-16

redis

Screenshot of cesium implementation scenario

turf. JS usage

À propos des principes de chiffrement et de décryptage RSA

Redirect vulnerability analysis of network security vulnerability analysis

Collection of garbled code problems in idea development environment
随机推荐
PHP wechat special merchant incoming V3 packaging interface
6、 JS naming rules and specifications
浅析Visual Studio 使用
You don't know the usage of stringstream
顺时针打印个数组
Diversified tables through TL table row consolidation
5. Attribute selector
1.初步认识express
torch. How to calculate addmm (m, mat1, mat2)
15. copy constructor
消息中间件
Differences and uses among cookies, localstorage, sessionstorage, and application caching
Redirect vulnerability analysis of network security vulnerability analysis
JS to get the date in the next seven days of the current date
CentOS installing MySQL and setting up remote access
银行理财产品有哪些?清算期是多长?
Map 23 summary
pytorch相同结构不同参数名模型加载权重
Mobile terminal development I: basic concepts
Simulink如何添加模块到Library Browser