当前位置:网站首页>图像拼接摄像头拼接笔记
图像拼接摄像头拼接笔记
2022-06-10 21:33:00 【AI视觉网奇】
1、基于opencv3.4.1开发的视频拼接算法,集成了特征提取、双路视频自动拼接算法;
2、需要使用vs2015,显卡运行库已经拷贝到执行文件中,直接就可以运行,如果需要进一步优化,需要自己再继续改进;
3、完全开源,由于工程较大,所以上传到网盘,有需要的可以下载使用;
4、算法中使用了多线程,如果高手做了更深的改进,欢迎一起交流。
网盘地址:链接:https://pan.baidu.com/s/1TfB6ZWPFaWfn18MiXRyuvg 密码:ltct。
原文链接:https://blog.csdn.net/zhulong1984/article/details/80748202
单应变换相比平移变换,具有更广泛的场景适应性,但同时稳定性会有一定程度下降。
设计到的技术细节有:
特征检测与描述
特征匹配与单应矩阵估计
opencv采集视频
渐入渐出图像融合
这个解决方案的硬件条件包括:有两个USB接口的计算机,两个合理放置的USB摄像头。
合理放置是指:两个摄像头分隔一定夹角,相机中心相距接近,所拍摄场景有足够的重叠部分。以上保证了单应变换的可用性。
代码实现:
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
# include "opencv2/features2d/features2d.hpp"
#include"opencv2/nonfree/nonfree.hpp"
#include"opencv2/calib3d/calib3d.hpp"
#include<iostream>
using namespace cv;
using namespace std;
int main()
{
VideoCapture cap1(0);
VideoCapture cap2(1);
double rate = 60;
int delay = 1000 / rate;
bool stop(false);
Mat img1;
Mat img2;
Mat result;
int d = 200;//渐入渐出融合宽度
Mat homography;
int k = 0;
namedWindow("cam1", CV_WINDOW_AUTOSIZE);
namedWindow("cam2", CV_WINDOW_AUTOSIZE);
namedWindow("stitch", CV_WINDOW_AUTOSIZE);
if (cap1.isOpened() && cap2.isOpened())
{
cout << "*** ***" << endl;
cout << "摄像头已启动!" << endl;
}
else
{
cout << "*** ***" << endl;
cout << "警告:请检查摄像头是否安装好!" << endl;
cout << "程序结束!" << endl << "*** ***" << endl;
return -1;
}
cap1.set(CV_CAP_PROP_FOCUS, 0);
cap2.set(CV_CAP_PROP_FOCUS, 0);
while (!stop)
{
if (cap1.read(img1) && cap2.read(img2))
{
imshow("cam1", img1);
imshow("cam2", img2);
//彩色帧转灰度
//cvtColor(img1, img1, CV_RGB2GRAY);
//cvtColor(img2, img2, CV_RGB2GRAY);
//计算单应矩阵
if (k < 1 || waitKey(delay) == 13)
{
cout << "正在匹配..." << endl;
vector<KeyPoint> keypoints1, keypoints2;
//构造检测器
//Ptr<FeatureDetector> detector = new ORB(120);
Ptr<FeatureDetector> detector = new SIFT(80);
detector->detect(img1, keypoints1);
detector->detect(img2, keypoints2);
//构造描述子提取器
Ptr<DescriptorExtractor> descriptor = detector;
//提取描述子
Mat descriptors1, descriptors2;
descriptor->compute(img1, keypoints1, descriptors1);
descriptor->compute(img2, keypoints2, descriptors2);
//构造匹配器
BFMatcher matcher(NORM_L2, true);
//匹配描述子
vector<DMatch> matches;
matcher.match(descriptors1, descriptors2, matches);
vector<Point2f> selPoints1, selPoints2;
vector<int> pointIndexes1, pointIndexes2;
for (vector<DMatch>::const_iterator it = matches.begin(); it != matches.end(); ++it)
{
selPoints1.push_back(keypoints1.at(it->queryIdx).pt);
selPoints2.push_back(keypoints2.at(it->trainIdx).pt);
}
vector<uchar> inliers(selPoints1.size(), 0);
homography = findHomography(selPoints1, selPoints2, inliers, CV_FM_RANSAC, 1.0);
//根据RANSAC重新筛选匹配
vector<DMatch> outMatches;
vector<uchar>::const_iterator itIn = inliers.begin();
vector<DMatch>::const_iterator itM = matches.begin();
for (; itIn != inliers.end(); ++itIn, ++itM)
{
if (*itIn)
{
outMatches.push_back(*itM);
}
}
k++;
//画出匹配结果
//Mat matchImage;
//drawMatches(img1, keypoints1, img2, keypoints2, outMatches, matchImage, 255, 255);
//imshow("match", matchImage);
///
}
//拼接
double t = getTickCount();
warpPerspective(img1, result, homography, Size(2 * img1.cols-d, img1.rows));//Size设置结果图像宽度,宽度裁去一部分,d可调
Mat half(result, Rect(0, 0, img2.cols - d, img2.rows));
img2(Range::all(), Range(0, img2.cols - d)).copyTo(half);
for (int i = 0; i < d; i++)
{
result.col(img2.cols - d + i) = (d - i) / (float)d*img2.col(img2.cols - d + i) + i / (float)d*result.col(img2.cols - d + i);
}
imshow("stitch", result);
t = ((double)getTickCount() - t) / getTickFrequency();
//cout << t << endl;
}
else
{
cout << "----------------------" << endl;
cout << "waitting..." << endl;
}
if (waitKey(1) == 27)
{
stop = true;
cout << "程序结束!" << endl;
cout << "*** ***" << endl;
}
}
return 0;
}
实验效果:
上述视频是用录屏软件录制的,分辨率会有下降。实际测试中,直接观察显示良好。两幅输入的源图像均为640*480分辨率,能够做到实时的实现。在我的具有i3处理器配置的笔记本上运行,拼接图像显示间隔为0.10″~0.12″。
————————————————
版权声明:本文为CSDN博主「czl389」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/czl389/article/details/60757000
边栏推荐
- 笔记(四)- 多线程
- [tcapulusdb knowledge base] tcapulusdb machine initialization and launch introduction
- Interpretation of dataset class of mmdetection
- Whale conference empowers intelligent epidemic prevention
- 【Py】接口签名校验失败可能是由于ensure_ascii的问题
- Redis从入门到入土
- [tcapulusdb knowledge base] Introduction to tcapulusdb engine parameter adjustment
- 【TcaplusDB知识库】TcaplusDB查看进程所在机器介绍
- Latex error: file ‘xxx.sty‘ not found
- CCF CSP 202109-1数组推导
猜你喜欢

数字孪生:第三人称鼠标操作
![[tcapulusdb knowledge base] Introduction to tcapulusdb patrol inspection statistics](/img/67/e0112903cb3992a64bab02060dd59a.png)
[tcapulusdb knowledge base] Introduction to tcapulusdb patrol inspection statistics

【TcaplusDB知识库】TcaplusDB TcapProxy扩缩容介绍

Sealem Finance打造Web3去中心化金融平台基础设施

Diablo immortality database station address Diablo immortality database website

TcaplusDB君 · 行业新闻汇编(五)

(十一)TableView

【TcaplusDB知识库】TcaplusDB刷新tbus通道介绍

Mmcv Config class introduction

Interpretation of dataset class of mmdetection
随机推荐
【TcaplusDB知识库】TcaplusDB进程启动介绍
Tcapulusdb Jun · industry news collection (VI)
【小程序】Vant-Weapp Radio单选框组件无法触发bind:Change事件
[tcapulusdb knowledge base] Introduction to tcapulusdb patrol inspection statistics
Interpretation of dataset class of mmdetection
TcaplusDB君 · 行业新闻汇编(五)
What about the popular state management library mobx?
Sealem Finance打造Web3去中心化金融平台基础设施
I have made a dating app for myself. Interested friends can have a look
C语言内功修炼【整型在内存中的存储】
CCF CSP 202109-3 impulse neural network
CCF CSP 202109-4 collect cards
[tcapulusdb knowledge base] tcapulusdb transaction management introduction
存储引擎分析
Basic use of mathtype7.x
[tcapulusdb knowledge base] tcapulusdb shard relocation introduction
【TcaplusDB知识库】TcaplusDB推送配置介绍
Is it safe for BOC securities to open an account? What is its relationship with the Bank of China?
【TcaplusDB知识库】TcaplusDB事务管理介绍
[tcapulusdb knowledge base] Introduction to tcapulusdb process startup