当前位置:网站首页>Yolov6 target detection practice: training your own data set (video tutorial)
Yolov6 target detection practice: training your own data set (video tutorial)
2022-07-26 07:05:00 【bai666ai】
Course link :https://download.csdn.net/course/detail/37584
YOLOv6 It is a high-performance real-time target detection network recently launched by meituan visual intelligence department , It surpasses other algorithms with the same volume in accuracy and speed .
YOLOv6 Use PyTorch Development , be based on RepVGG style Design the re parameterization 、 More efficient backbone network EfficientRep Backbone and Rep-PAN Neck. Adopted Anchor-free Anchor free paradigm 、 Decoupling head 、SimOTA Label allocation strategy and SIoU Frontier technologies such as bounding box regression loss .
This course will teach you how to use labelImg Labeling and use YOLOv6 Train your own dataset , Complete a multi-target detection project , It can detect two target categories of football and Messi in images and videos .
This course is in Windows and Ubuntu Project demonstration on the system . Include : install YOLOv6、 Label your own dataset 、 Prepare your own dataset ( Automatically divide training set and verification set )、 Modify the configuration file 、 Train your own dataset 、 Test the trained network model and performance statistics .

边栏推荐
- Multi-objective collaborative decision-making in supply chain
- centos7下的MySQL57版本,遇到一个问题不理解有知道的大shen告知
- 20220725 convolution in automatic control principle
- 【Star项目】小帽飞机大战(四)
- C#使用log4net插件,输出日志到文件
- LTS(Light-Task-Scheduler)
- MySQL isolation level transactions
- Database performance test (MySQL)
- buuReserve(4)
- Function of hot air pad
猜你喜欢

【硬十宝典】——7.2【动态RAM】DDR4与DDR3区别解析

【Star项目】小帽飞机大战(三)

AcWing-每日一题

Heap parsing and heap sorting

火焰图分析Flink反压

Can you learn fast and well with dual stream network? Harbin Institute of Technology & Microsoft proposed a distillation dual encoder model for visual language understanding, which can achieve fast an

Drools (2): drools quick start

Rectification ideas for the previous article

【硬十宝典】——7.1【动态RAM】DDR硬件设计要点

MySQL execution plan
随机推荐
Command line artifact for operating database: mycli
QT监听socket事件,使用QSocketNotifier类
IDEA——使用@Slf4j打印日志
Contents mismatch at: 08000000H (Flash=FFH Required=00H) ! Too many errors to display !
LTS(Light-Task-Scheduler)
Queue assistant | product update log in June 2022
NPM command
[hard ten treasures] - 7.2 [dynamic RAM] analysis of the difference between DDR4 and DDR3
20220725 自动控制原理中的补偿器
20220724 三角函数系的正交性
二叉树知识总结
File server fastdfs
字符串和内存函数
Is it safe to invest in treasury bonds in 2022? How do individuals buy treasury bonds?
[hardware ten treasures] - 7.1 [dynamic RAM] key points of DDR hardware design
每周小贴士#142:多参数构造函数和explicit
Curve curvature display
The results of the soft test can be checked, and the entry to query the results of the soft test has been opened in the first half of 2022
[QT] how to obtain the number of rows and columns of qtableview and qtablewidget
Difference between shape and size ()