当前位置:网站首页>numpy. linspace()
numpy. linspace()
2022-06-24 10:18:00 【Wanderer001】
Reference resources numpy.linspace - cloud + Community - Tencent cloud
numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)[source]
Return evenly spaced numbers over a specified interval.
Returns num evenly spaced samples, calculated over the interval [start, stop].
The endpoint of the interval can optionally be excluded.
Changed in version 1.16.0: Non-scalar start and stop are now supported.
| Parameters: | start : array_like The starting value of the sequence. stop : array_like The end value of the sequence, unless endpoint is set to False. In that case, the sequence consists of all but the last of num : int, optional Number of samples to generate. Default is 50. Must be non-negative. endpoint : bool, optional If True, stop is the last sample. Otherwise, it is not included. Default is True. retstep : bool, optional If True, return (samples, step), where step is the spacing between samples. dtype : dtype, optional The type of the output array. If dtype is not given, infer the data type from the other input arguments. New in version 1.9.0. axis : int, optional The axis in the result to store the samples. Relevant only if start or stop are array-like. By default (0), the samples will be along a new axis inserted at the beginning. Use -1 to get an axis at the end. New in version 1.16.0. |
|---|---|
| Returns: | samples : ndarray There are num equally spaced samples in the closed interval step : float, optional Only returned if retstep is True Size of spacing between samples. |
See also
Similar to linspace, but uses a step size (instead of the number of samples).
Similar to linspace, but with numbers spaced evenly on a log scale (a geometric progression).
Similar to geomspace, but with the end points specified as logarithms.
Examples
>>> np.linspace(2.0, 3.0, num=5)
array([2. , 2.25, 2.5 , 2.75, 3. ])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
array([2. , 2.2, 2.4, 2.6, 2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
(array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)Graphical illustration:
>>> import matplotlib.pyplot as plt
>>> N = 8
>>> y = np.zeros(N)
>>> x1 = np.linspace(0, 10, N, endpoint=True)
>>> x2 = np.linspace(0, 10, N, endpoint=False)
>>> plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show() 
边栏推荐
- 读取csv(tsv)文件出错
- How large and medium-sized enterprises build their own monitoring system
- 物联网?快来看 Arduino 上云啦
- 机器学习——主成分分析(PCA)
- 学习使用php对字符串中的特殊符号进行过滤的方法
- How does home office manage the data center network infrastructure?
- 415-二叉树(144. 二叉树的前序遍历、145. 二叉树的后序遍历、94. 二叉树的中序遍历)
- 包装类型的缓存机制
- Graffiti smart brings a variety of heavy smart lighting solutions to the 2022 American International Lighting Exhibition
- leetCode-498: 对角线遍历
猜你喜欢

Uniapp develops wechat official account, and the drop-down box selects the first one in the list by default

canvas无限扫描js特效代码

小程序学习之获取用户信息(getUserProfile and getUserInfo)

How to standardize data center infrastructure management process

3.员工的增删改查

Canvas draw picture

Three ways to use applicationcontextinitializer

canvas管道动画js特效

4. classification management business development

SQL Server AVG函数取整问题
随机推荐
上升的气泡canvas破碎动画js特效
Is there a reliable and low commission futures account opening channel in China? Is it safe to open an account online?
SQL statistics of users logged in for N consecutive days
机器学习——感知机及K近邻
2. login and exit function development
SQL sever试题求最晚入职日期
包装类型与基本类型的区别
1.项目环境搭建
被困英西中学的师生安全和食物有保障
学习整理在php中使用KindEditor富文本编辑器
YOLOv6:又快又准的目标检测框架开源啦
线程调度的常用方法
Three ways to use applicationcontextinitializer
Detailed explanation of PHP singleton mode
学习使用KindEditor富文本编辑器,点击上传图片遮罩太大或白屏解决方案
JS singleton mode
时尚的弹出模态登录注册窗口
leetCode-498: 對角線遍曆
5. dish management business development
leetCode-223: 矩形面积