当前位置:网站首页>[examination skills] memory method and simple derivation of Green formula

[examination skills] memory method and simple derivation of Green formula

2022-06-22 00:46:00 Fish in the deep sea (・ ω& lt;)*

Video Explanation : Memory method and simple derivation of Green formula
When you learn Green's formula, you will find that the form given in books is not easy to remember .
You may have the following questions
Forget which is positive, counterclockwise or clockwise ?
Forget the P,Q Who should be partial derivative ?
Forget who subtracts who after the partial derivative ?

This article is divided into two parts , The first part is to transform Green's formula into a form that is easier to remember .
The second part is a simple derivation of Green's formula , If you really can't remember in the examination room , It can also be done through 2-3 The calculation of minutes comes from the Green formula .

First we need to know , Green's formula is a bridge between closed curve integral and double integral .
∮ Green's formula ∬ \oint{}\xleftrightarrow{\text{ Green's formula }}\iint{} Green's formula

Write it out completely
∮ L P d x + Q d y = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y \oint_L{Pdx+Qdy}=\iint_D{\left( \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \right) dxdy} LPdx+Qdy=D(xQyP)dxdy

Memory method

How to remember counterclockwise , Take out your right hand , Give yourself a thumbs up , We postgraduate candidates are all awesome , Then four fingers bend in the direction ( Anti-clockwise ) Is the positive direction , The students who have the courage to take the postgraduate entrance examination are very good !
 Insert picture description here
Then, how to remember the form in the integrand function of the double integral ?
You can write it in the form of a determinant
∂ Q ∂ x − ∂ P ∂ y = ∣ ∂ ∂ x ∂ ∂ y P Q ∣ \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=\left| \begin{matrix} \frac{\partial}{\partial x}& \frac{\partial}{\partial y}\\ P& Q\\ \end{matrix} \right| xQyP=xPyQ
The form of determinant is very regular , Above are two partial derivatives , The following is also in the order of integration P,Q
If you are familiar with Hamiltonian operator (Nabla operator ) Students can also remember this form
∂ Q ∂ x − ∂ P ∂ y = ∣ ∂ ∂ x ∂ ∂ y P Q ∣ = ∣ ∇ × ( P , Q ) ∣ \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=\left| \begin{matrix} \frac{\partial}{\partial x}& \frac{\partial}{\partial y}\\ P& Q\\ \end{matrix} \right|=\left| \nabla \times \left( P,Q \right) \right| xQyP=xPyQ=×(P,Q)

Simple deduction

If you can't remember in the examination room , The integrand function in the double integral can also be derived in a simple way .
Use the simplest curve , Counterclockwise rectangle , Let the coordinates of the lower left corner be ( x 0 , y 0 ) (x_0,y_0) (x0,y0), The coordinates in the upper right corner are ( x 1 , y 1 ) (x_1,y_1) (x1,y1)
 Insert picture description here

Do a line integral over it , It can be disassembled into 4 Segment calculation
∮ C = ∫ C 1 + ∫ C 2 + ∫ C 3 + ∫ C 4 \oint_C{}=\int_{C1}{}+\int_{C2}{}+\int_{C3}{}+\int_{C4}{} C=C1+C2+C3+C4

about C 1 C1 C1 paragraph , y = y 0 , d y = 0 y=y_0, dy=0 y=y0,dy=0
∫ C 1 P d x + Q d y = ∫ x 0 x 1 P ( x , y 0 ) d x \int_{C1}{Pdx+Qdy}=\int_{x_0}^{x_1}{P\left( x,y_0 \right)dx} C1Pdx+Qdy=x0x1P(x,y0)dx
about C 2 C2 C2 paragraph , x = x 1 , d x = 0 x=x_1, dx=0 x=x1,dx=0
∫ C 2 P d x + Q d y = ∫ y 0 y 1 Q ( x 1 , y ) d y \int_{C2}{Pdx+Qdy}=\int_{y_0}^{y_1}{Q\left( x_1,y \right)dy} C2Pdx+Qdy=y0y1Q(x1,y)dy
The same can be
∫ C 3 P d x + Q d y = ∫ x 1 x 0 P ( x , y 1 ) d x = − ∫ x 0 x 1 P ( x , y 1 ) d x \int_{C3}{Pdx+Qdy}=\int_{x_1}^{x_0}{P\left( x,y_1 \right)dx}=-\int_{x_0}^{x_1}{P\left( x,y_1 \right)dx} C3Pdx+Qdy=x1x0P(x,y1)dx=x0x1P(x,y1)dx
∫ C 4 P d x + Q d y = ∫ y 1 y 0 Q ( x 0 , y ) d y = − ∫ y 0 y 1 Q ( x 0 , y ) d y \int_{C4}{Pdx+Qdy}=\int_{y_1}^{y_0}{Q\left( x_0,y \right)dy}=-\int_{y_0}^{y_1}{Q\left( x_0,y \right)dy} C4Pdx+Qdy=y1y0Q(x0,y)dy=y0y1Q(x0,y)dy

Then the integral of the whole line is
∮ L P d x + Q d y = ∫ x 0 x 1 P ( x , y 0 ) d x + ∫ y 0 y 1 Q ( x 1 , y ) d y − ∫ x 0 x 1 P ( x , y 1 ) d x − ∫ y 0 y 1 Q ( x 0 , y ) d y \oint_L{Pdx+Qdy}=\int_{x_0}^{x_1}{P\left( x,y_0 \right)dx}+\int_{y_0}^{y_1}{Q\left( x_1,y \right)dy}-\int_{x_0}^{x_1}{P\left( x,y_1 \right)dx}-\int_{y_0}^{y_1}{Q\left( x_0,y \right)dy} LPdx+Qdy=x0x1P(x,y0)dx+y0y1Q(x1,y)dyx0x1P(x,y1)dxy0y1Q(x0,y)dy
Merge those with the same integral limit
∮ L P d x + Q d y = ∫ x 0 x 1 [ P ( x , y 0 ) − P ( x , y 1 ) ] d x + ∫ y 0 y 1 [ Q ( x 1 , y ) − Q ( x 0 , y ) ] d y \oint_L{Pdx+Qdy}=\int_{x_0}^{x_1}{\left[ P\left( x,y_0 \right) -P\left( x,y_1 \right) \right]dx}+\int_{y_0}^{y_1}{\left[ Q\left( x_1,y \right) -Q\left( x_0,y \right) \right]dy} LPdx+Qdy=x0x1[P(x,y0)P(x,y1)]dx+y0y1[Q(x1,y)Q(x0,y)]dy
The subtraction in the integrand can be written as a definite integral
P ( x , y 0 ) − P ( x , y 1 ) = ∫ y 1 y 0 P y ( x , y ) d y = − ∫ y 0 y 1 P y ( x , y ) d y P\left( x,y_0 \right) -P\left( x,y_1 \right) =\int_{y_1}^{y_0}{P_y\left( x,y \right) dy}=-\int_{y_0}^{y_1}{P_y\left( x,y \right) dy} P(x,y0)P(x,y1)=y1y0Py(x,y)dy=y0y1Py(x,y)dy
Q ( x 1 , y ) − Q ( x 0 , y ) = ∫ x 0 x 1 Q x ( x , y ) d x Q\left( x_1,y \right) -Q\left( x_0,y \right) =\int_{x_0}^{x_1}{Q_x\left( x,y \right) dx} Q(x1,y)Q(x0,y)=x0x1Qx(x,y)dx

So it can be written in the form of a double integral
∮ L P d x + Q d y = − ∫ x 0 x 1 d x ∫ y 0 y 1 P y ( x , y ) d y + ∫ y 0 y 1 d y ∫ x 0 x 1 Q x ( x , y ) d x \oint_L{Pdx+Qdy}=-\int_{x_0}^{x_1}{dx}\int_{y_0}^{y_1}{P_y\left( x,y \right) dy}+\int_{y_0}^{y_1}{dy}\int_{x_0}^{x_1}{Q_x\left( x,y \right) dx} LPdx+Qdy=x0x1dxy0y1Py(x,y)dy+y0y1dyx0x1Qx(x,y)dx

Because our area is rectangular , So it's easy to swap the order of integrals
− ∫ x 0 x 1 d x ∫ y 0 y 1 P y ( x , y ) d y + ∫ y 0 y 1 d y ∫ x 0 x 1 Q x ( x , y ) d x = ∬ D [ Q x ( x , y ) − P y ( x , y ) ] d x d y -\int_{x_0}^{x_1}{dx}\int_{y_0}^{y_1}{P_y\left( x,y \right) dy}+\int_{y_0}^{y_1}{dy}\int_{x_0}^{x_1}{Q_x\left( x,y \right) dx}=\iint\limits_D{\left[ Q_x\left( x,y \right) -P_y\left( x,y \right) \right] dxdy} x0x1dxy0y1Py(x,y)dy+y0y1dyx0x1Qx(x,y)dx=D[Qx(x,y)Py(x,y)]dxdy
So we can get the form of Green's formula
If the title is given clockwise , Then do it clockwise , The end result will be
∬ D [ P y ( x , y ) − Q x ( x , y ) ] d x d y \iint\limits_D{\left[ P_y\left( x,y \right) -Q_x\left( x,y \right) \right] dxdy} D[Py(x,y)Qx(x,y)]dxdy

In fact, we can also divide the region into small rectangles ( The Tongji book proves that the region is cut horizontally and vertically ), In this way, the Green's formula of any curve can be derived , Interested students can refer to this article
kaysen School leader : The most popular and thorough explanation in the history of Green's formula
Cut the area into small rectangles , Take out each rectangle and convert it from line integral to double integral
 Insert picture description here
Because the adjacent rectangular line integrals will cancel each other , So adding up the line integrals of the small rectangles is the line integral of the peripheral curves , The double integral of the small rectangle adds up to the double integral of the whole region
 Insert picture description here

原网站

版权声明
本文为[Fish in the deep sea (・ ω& lt;)*]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/173/202206212341175153.html