当前位置:网站首页>[examination skills] memory method and simple derivation of Green formula
[examination skills] memory method and simple derivation of Green formula
2022-06-22 00:46:00 【Fish in the deep sea (・ ω& lt;)*】
Video Explanation : Memory method and simple derivation of Green formula
When you learn Green's formula, you will find that the form given in books is not easy to remember .
You may have the following questions
Forget which is positive, counterclockwise or clockwise ?
Forget the P,Q Who should be partial derivative ?
Forget who subtracts who after the partial derivative ?
This article is divided into two parts , The first part is to transform Green's formula into a form that is easier to remember .
The second part is a simple derivation of Green's formula , If you really can't remember in the examination room , It can also be done through 2-3 The calculation of minutes comes from the Green formula .
First we need to know , Green's formula is a bridge between closed curve integral and double integral .
∮ Green's formula ∬ \oint{}\xleftrightarrow{\text{ Green's formula }}\iint{} ∮ Green's formula ∬
Write it out completely
∮ L P d x + Q d y = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y \oint_L{Pdx+Qdy}=\iint_D{\left( \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \right) dxdy} ∮LPdx+Qdy=∬D(∂x∂Q−∂y∂P)dxdy
Memory method
How to remember counterclockwise , Take out your right hand , Give yourself a thumbs up , We postgraduate candidates are all awesome , Then four fingers bend in the direction ( Anti-clockwise ) Is the positive direction , The students who have the courage to take the postgraduate entrance examination are very good !
Then, how to remember the form in the integrand function of the double integral ?
You can write it in the form of a determinant
∂ Q ∂ x − ∂ P ∂ y = ∣ ∂ ∂ x ∂ ∂ y P Q ∣ \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=\left| \begin{matrix} \frac{\partial}{\partial x}& \frac{\partial}{\partial y}\\ P& Q\\ \end{matrix} \right| ∂x∂Q−∂y∂P=∣∣∣∣∂x∂P∂y∂Q∣∣∣∣
The form of determinant is very regular , Above are two partial derivatives , The following is also in the order of integration P,Q
If you are familiar with Hamiltonian operator (Nabla operator ) Students can also remember this form
∂ Q ∂ x − ∂ P ∂ y = ∣ ∂ ∂ x ∂ ∂ y P Q ∣ = ∣ ∇ × ( P , Q ) ∣ \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=\left| \begin{matrix} \frac{\partial}{\partial x}& \frac{\partial}{\partial y}\\ P& Q\\ \end{matrix} \right|=\left| \nabla \times \left( P,Q \right) \right| ∂x∂Q−∂y∂P=∣∣∣∣∂x∂P∂y∂Q∣∣∣∣=∣∇×(P,Q)∣
Simple deduction
If you can't remember in the examination room , The integrand function in the double integral can also be derived in a simple way .
Use the simplest curve , Counterclockwise rectangle , Let the coordinates of the lower left corner be ( x 0 , y 0 ) (x_0,y_0) (x0,y0), The coordinates in the upper right corner are ( x 1 , y 1 ) (x_1,y_1) (x1,y1)
Do a line integral over it , It can be disassembled into 4 Segment calculation
∮ C = ∫ C 1 + ∫ C 2 + ∫ C 3 + ∫ C 4 \oint_C{}=\int_{C1}{}+\int_{C2}{}+\int_{C3}{}+\int_{C4}{} ∮C=∫C1+∫C2+∫C3+∫C4
about C 1 C1 C1 paragraph , y = y 0 , d y = 0 y=y_0, dy=0 y=y0,dy=0
∫ C 1 P d x + Q d y = ∫ x 0 x 1 P ( x , y 0 ) d x \int_{C1}{Pdx+Qdy}=\int_{x_0}^{x_1}{P\left( x,y_0 \right)dx} ∫C1Pdx+Qdy=∫x0x1P(x,y0)dx
about C 2 C2 C2 paragraph , x = x 1 , d x = 0 x=x_1, dx=0 x=x1,dx=0
∫ C 2 P d x + Q d y = ∫ y 0 y 1 Q ( x 1 , y ) d y \int_{C2}{Pdx+Qdy}=\int_{y_0}^{y_1}{Q\left( x_1,y \right)dy} ∫C2Pdx+Qdy=∫y0y1Q(x1,y)dy
The same can be
∫ C 3 P d x + Q d y = ∫ x 1 x 0 P ( x , y 1 ) d x = − ∫ x 0 x 1 P ( x , y 1 ) d x \int_{C3}{Pdx+Qdy}=\int_{x_1}^{x_0}{P\left( x,y_1 \right)dx}=-\int_{x_0}^{x_1}{P\left( x,y_1 \right)dx} ∫C3Pdx+Qdy=∫x1x0P(x,y1)dx=−∫x0x1P(x,y1)dx
∫ C 4 P d x + Q d y = ∫ y 1 y 0 Q ( x 0 , y ) d y = − ∫ y 0 y 1 Q ( x 0 , y ) d y \int_{C4}{Pdx+Qdy}=\int_{y_1}^{y_0}{Q\left( x_0,y \right)dy}=-\int_{y_0}^{y_1}{Q\left( x_0,y \right)dy} ∫C4Pdx+Qdy=∫y1y0Q(x0,y)dy=−∫y0y1Q(x0,y)dy
Then the integral of the whole line is
∮ L P d x + Q d y = ∫ x 0 x 1 P ( x , y 0 ) d x + ∫ y 0 y 1 Q ( x 1 , y ) d y − ∫ x 0 x 1 P ( x , y 1 ) d x − ∫ y 0 y 1 Q ( x 0 , y ) d y \oint_L{Pdx+Qdy}=\int_{x_0}^{x_1}{P\left( x,y_0 \right)dx}+\int_{y_0}^{y_1}{Q\left( x_1,y \right)dy}-\int_{x_0}^{x_1}{P\left( x,y_1 \right)dx}-\int_{y_0}^{y_1}{Q\left( x_0,y \right)dy} ∮LPdx+Qdy=∫x0x1P(x,y0)dx+∫y0y1Q(x1,y)dy−∫x0x1P(x,y1)dx−∫y0y1Q(x0,y)dy
Merge those with the same integral limit
∮ L P d x + Q d y = ∫ x 0 x 1 [ P ( x , y 0 ) − P ( x , y 1 ) ] d x + ∫ y 0 y 1 [ Q ( x 1 , y ) − Q ( x 0 , y ) ] d y \oint_L{Pdx+Qdy}=\int_{x_0}^{x_1}{\left[ P\left( x,y_0 \right) -P\left( x,y_1 \right) \right]dx}+\int_{y_0}^{y_1}{\left[ Q\left( x_1,y \right) -Q\left( x_0,y \right) \right]dy} ∮LPdx+Qdy=∫x0x1[P(x,y0)−P(x,y1)]dx+∫y0y1[Q(x1,y)−Q(x0,y)]dy
The subtraction in the integrand can be written as a definite integral
P ( x , y 0 ) − P ( x , y 1 ) = ∫ y 1 y 0 P y ( x , y ) d y = − ∫ y 0 y 1 P y ( x , y ) d y P\left( x,y_0 \right) -P\left( x,y_1 \right) =\int_{y_1}^{y_0}{P_y\left( x,y \right) dy}=-\int_{y_0}^{y_1}{P_y\left( x,y \right) dy} P(x,y0)−P(x,y1)=∫y1y0Py(x,y)dy=−∫y0y1Py(x,y)dy
Q ( x 1 , y ) − Q ( x 0 , y ) = ∫ x 0 x 1 Q x ( x , y ) d x Q\left( x_1,y \right) -Q\left( x_0,y \right) =\int_{x_0}^{x_1}{Q_x\left( x,y \right) dx} Q(x1,y)−Q(x0,y)=∫x0x1Qx(x,y)dx
So it can be written in the form of a double integral
∮ L P d x + Q d y = − ∫ x 0 x 1 d x ∫ y 0 y 1 P y ( x , y ) d y + ∫ y 0 y 1 d y ∫ x 0 x 1 Q x ( x , y ) d x \oint_L{Pdx+Qdy}=-\int_{x_0}^{x_1}{dx}\int_{y_0}^{y_1}{P_y\left( x,y \right) dy}+\int_{y_0}^{y_1}{dy}\int_{x_0}^{x_1}{Q_x\left( x,y \right) dx} ∮LPdx+Qdy=−∫x0x1dx∫y0y1Py(x,y)dy+∫y0y1dy∫x0x1Qx(x,y)dx
Because our area is rectangular , So it's easy to swap the order of integrals
− ∫ x 0 x 1 d x ∫ y 0 y 1 P y ( x , y ) d y + ∫ y 0 y 1 d y ∫ x 0 x 1 Q x ( x , y ) d x = ∬ D [ Q x ( x , y ) − P y ( x , y ) ] d x d y -\int_{x_0}^{x_1}{dx}\int_{y_0}^{y_1}{P_y\left( x,y \right) dy}+\int_{y_0}^{y_1}{dy}\int_{x_0}^{x_1}{Q_x\left( x,y \right) dx}=\iint\limits_D{\left[ Q_x\left( x,y \right) -P_y\left( x,y \right) \right] dxdy} −∫x0x1dx∫y0y1Py(x,y)dy+∫y0y1dy∫x0x1Qx(x,y)dx=D∬[Qx(x,y)−Py(x,y)]dxdy
So we can get the form of Green's formula
If the title is given clockwise , Then do it clockwise , The end result will be
∬ D [ P y ( x , y ) − Q x ( x , y ) ] d x d y \iint\limits_D{\left[ P_y\left( x,y \right) -Q_x\left( x,y \right) \right] dxdy} D∬[Py(x,y)−Qx(x,y)]dxdy
In fact, we can also divide the region into small rectangles ( The Tongji book proves that the region is cut horizontally and vertically ), In this way, the Green's formula of any curve can be derived , Interested students can refer to this article
kaysen School leader : The most popular and thorough explanation in the history of Green's formula
Cut the area into small rectangles , Take out each rectangle and convert it from line integral to double integral 
Because the adjacent rectangular line integrals will cancel each other , So adding up the line integrals of the small rectangles is the line integral of the peripheral curves , The double integral of the small rectangle adds up to the double integral of the whole region 
边栏推荐
- Pseudo instruction in arm assembly
- [golang] cannot convert expression of type 'interface{}' to type 'string' (solution)
- 【Try to Hack】nmap
- Blazor data binding
- [set static route] "WiFi for private internal network and external network“
- 合理选择液压滑环密封间隙的重要性
- eslint:错误
- 第八章 习题(45A)【微机原理】【习题】
- 关于相机位姿的可视化
- Document.readyState 如何使用和侦听
猜你喜欢

Introduction to activities in the name of the father (you can collect sheep)

汇编语言范例

Mendix公司新任CFO Tom Ellison通过领导团队转型推动公司下一阶段高速增长

唐太宗把微服务的“心跳机制”玩到了极致!

Win10使用用户初始密码,连接Win Server失败

You have a chance, here is a stage

HMS core machine learning service ID card identification function to achieve efficient information entry

Query of the range of the cotolly tree chtolly tree old driver tree
![[actf freshman competition 2020]swp](/img/80/9fe85ee614857c5800c0d0b1ba9a3d.png)
[actf freshman competition 2020]swp

再次认识 WebAssembly
随机推荐
QT self made MP3 player
关于一次Web线下面试的思考
Acwing match 56 Weekly
Error in jsonobject getting date type (getsqldate)
Blazor数据绑定
Tcp/ip-- routing
How to gracefully count code time
Farm Game
Version dynamic | exchangis 1.0.0-rc1 version release
Document. How to use and listen for readyState
Harmonyos application development second assignment notes
Meetup03 review: introduction to the new version of linkis and the application practice of DSS
在terminal拷贝粘贴,多了0~与1~字符
[wechat applet] 40029 invalid code solution set
Unicode is not defined_ String identity solution
[actf freshman competition 2020]swp
Introduction and use of pytest fixture, confitest and mark
数据魔术师告诉你整数规划COPT5.0离CPLEX还有多远?
AcWing 第 56 场周赛
[an Xun cup 2019] blowing bass to sweep QR code