当前位置:网站首页>Google Earth Engine(GEE)——计算ndvi的零星植被状况(墨西哥为例)

Google Earth Engine(GEE)——计算ndvi的零星植被状况(墨西哥为例)

2022-06-13 12:13:00 华为云

本文使用Landsat7影像来计算ndvi的零星植被状况并查看影像的温度,这里面要特别注意不同的影像集合中波段名称是不同的,所以建议要认真查看波段,这里再次列举一下本次要用到的影像波段,特别注意去云波段:

Resolution

30 meters

Bands Table

NameDescriptionMinMaxUnitsWavelengthScaleOffset
SR_B1Band 1 (blue) surface reflectance1654550.45-0.52 μm0.0000275-0.2
SR_B2Band 2 (green) surface reflectance1654550.52-0.60 μm0.0000275-0.2
SR_B3Band 3 (red) surface reflectance1654550.63-0.69 μm0.0000275-0.2
SR_B4Band 4 (near infrared) surface reflectance1654550.77-0.90 μm0.0000275-0.2
SR_B5Band 5 (shortwave infrared 1) surface reflectance1654551.55-1.75 μm0.0000275-0.2
SR_B7Band 7 (shortwave infrared 2) surface reflectance1654552.08-2.35 μm0.0000275-0.2
SR_ATMOS_OPACITYA general interpretation of atmospheric opacity generated by LEDAPS and based on the radiance viewed over Dark Dense Vegetation (DDV) within the scene. A general interpretation of atmospheric opacity is that values (after scaling by 0.001 is applied) less than 0.1 are clear, 0.1-0.3 are average, and values greater than 0.3 indicate haze or other cloud situations. SR values from pixels with high atmospheric opacity will be less reliable, especially under high solar zenith angle conditions. The SR_ATMOS_OPACITY band is provided for advanced users and for product quality assessment and has not been validated. Most users are advised to instead use the QA_PIXEL band information for cloud discrimination.0100000.0010
SR_CLOUD_QACloud Quality Assessment00
SR_CLOUD_QA Bitmask
  • Bit 0: Dark Dense Vegetation (DDV)
    • Bit 1: Cloud
      • Bit 2: Cloud Shadow
        • Bit 3: Adjacent to Cloud
          • Bit 4: Snow
            • Bit 5: Water
              ST_B6Band 6 surface temperature. If 'PROCESSING_LEVEL' is set to 'L2SR', this band is fully masked out.065535Kelvin10.40-12.50 μm0.00341802149
              ST_ATRANAtmospheric Transmittance. If 'PROCESSING_LEVEL' is set to 'L2SR', this band is fully masked out.0100000.00010
              ST_CDISTPixel distance to cloud. If 'PROCESSING_LEVEL' is set to 'L2SR', this band is fully masked out.024000km0.010
              ST_DRADDownwelled Radiance. If 'PROCESSING_LEVEL' is set to 'L2SR', this band is fully masked out.028000W/(m^2*sr*um)/ DN0.0010
              ST_EMISEmissivity estimated from ASTER GED. If 'PROCESSING_LEVEL' is set to 'L2SR', this band is fully masked out.0100000.00010
              ST_EMSDEmissivity standard deviation. If 'PROCESSING_LEVEL' is set to 'L2SR', this band is fully masked out.0100000.00010
              ST_QAUncertainty of the Surface Temperature band. If 'PROCESSING_LEVEL' is set to 'L2SR', this band is fully masked out.032767K0.010
              ST_TRADThermal band converted to radiance. If 'PROCESSING_LEVEL' is set to 'L2SR', this band is fully masked out.022000W/(m^2*sr*um)/ DN0.0010
              ST_URADUpwelled Radiance. If 'PROCESSING_LEVEL' is set to 'L2SR', this band is fully masked out.028000W/(m^2*sr*um)/ DN0.0010
              QA_PIXELPixel quality attributes generated from the CFMASK algorithm.00
              QA_PIXEL Bitmask
              • Bit 0: Fill
                • Bit 1: Dilated Cloud
                  • Bit 2: Unused
                    • Bit 3: Cloud
                      • Bit 4: Cloud Shadow
                        • Bit 5: Snow
                          • Bit 6: Clear
                            • 0: Cloud or Dilated Cloud bits are set
                            • 1: Cloud and Dilated Cloud bits are not set
                          • Bit 7: Water
                            • Bits 8-9: Cloud Confidence
                              • 0: None
                              • 1: Low
                              • 2: Medium
                              • 3: High
                            • Bits 10-11: Cloud Shadow Confidence
                              • 0: None
                              • 1: Low
                              • 2: Medium
                              • 3: High
                            • Bits 12-13: Snow/Ice Confidence
                              • 0: None
                              • 1: Low
                              • 2: Medium
                              • 3: High
                            • Bits 14-15: Cirrus Confidence
                              • 0: None
                              • 1: Low
                              • 2: Medium
                              • 3: High
                            QA_RADSATRadiometric saturation QA00
                            QA_RADSAT Bitmask
                            • Bit 0: Band 1 data saturated
                              • Bit 1: Band 2 data saturated
                                • Bit 2: Band 3 data saturated
                                  • Bit 3: Band 4 data saturated
                                    • Bit 4: Band 5 data saturated
                                      • Bit 5: Band 6L data saturated
                                        • Bit 6: Band 7 data saturated
                                          • Bit 7: Unused
                                            • Bit 8: Band 6H data saturated
                                              • Bit 9: Dropped pixel
                                                • 0: Pixel present
                                                • 1: Detector doesn't have a value


                                              代码:

                                              获取的最大最小值的结果: 这里用的是.values().get(0),也就是第一个值

                                              结果:

                                              ​代码链接:

                                              (179条消息) Google Earth Engine(GEE)——计算ndvi的零星植被状况(墨西哥为例)_此星光明2021年博客之星云计算Top3的博客-CSDN博客

                                              往期推荐:

                                              Google Earth Engine(GEE)——自动化制作30米Landsat影像和土地分类(只需要输入研究区路径)

                                              Google Earth Engine ——Landsat 5 TM合成影像8天/32天/年际增强植被指数(EVI)数据集

                                              Google Earth Engine ——Landsat 5 TM合成影像8天/32天/年际烧伤面积指数(BAI)

                                              Google Earth Engine ——LANDSAT8系列归一化植被指数NDVI数据集

                                              Google Earth Engine ——全球JRC/GSW1_3/MonthlyHistory数据集的观测数据

                                              Google Earth Engine ——全球1984年至2015年地表水的位置和时间即地表水数据集的观测数据的元数据

                                              原网站

                                              版权声明
                                              本文为[华为云]所创,转载请带上原文链接,感谢
                                              https://bbs.huaweicloud.com/blogs/359077