当前位置:网站首页>【图像检测】基于Itti模型实现图像显著性检测附matlab代码
【图像检测】基于Itti模型实现图像显著性检测附matlab代码
2022-06-26 06:43:00 【Matlab科研工作室】
1 简介
视觉显著性计算模型以心理学、神经科学、认知理论等领域的研究成果或假说为前提,建立数学模型来模拟人类视觉系统指引注意力分配和视觉认知的过程,通过模拟和仿真人类视觉感知机理,将存在待检测目标的人眼感兴趣区域视为图像中某些特征显著的像素点的集合,计算图像中这些显著点来检测感兴趣区域,从而可以快速而有效地处理视觉数据。在图像分割、目标检测、场景感知等许多图像处理任务中,图像中不同区域对视觉系统刺激程度不同引起的视觉显著性信息将系统资源优先集中于感兴趣区域进行计算分析,降低了处理过程的复杂性,为后续处理提供了极大的便利。
2 部分代码
function Nimg = Gscale(img,levels,gsize,sigma)% Function to generate a gaussian-pyramid for the given input image%% Input:% img: input image-matrix grayscale% levels: number of levels of the pyramid% gsize: size of the gaussian kernel 高斯核的大小 [w h] ([5 5] normally provides a smooth output)% sigma: sigma for gaussian kernel% Output:% Nimg: is a struct consisting of images from each level% : Nimg.img;% Usage:% im = imread('cameraman.tif');% Nimg = Gscale(im,3,[5 5],1.6);% i = 2; %select a level% figure; imshow(Nimg(i).img);%% Author: Pranam Janney Date: 24th July 2006 15:39% Email: [email protected]%% Revised Version 1.0.1 Date: 04th August 2006, 10:50%%guassian filter with a sigma=1.6 %高斯滤波g = fspecial('gaussian',gsize,sigma); %为高斯低通滤波,有两个参数,hsize表示模板尺寸,sigma为滤波器的标准值,单位为像素,%pyramidfor i = 1:levelsif i == 1im = imfilter(img,g,'conv');Nimg(i).img = im;else%perform guassian filteringim = imfilter(Nimg(i-1).img,g,'conv');%perform downsampling (horizontal)im1 = im(:,1:2:size(Nimg(i-1).img,2));%verticalim2 = im1(1:2:size(Nimg(i-1).img,1),:);%store it in a struct formatNimg(i).img = im2;endend%End
3 仿真结果


4 参考文献
[1]陆吉. 基于改进ITTI模型的SAR图像目标检测[J]. 测绘与空间地理信息, 2018, 41(11):5.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
边栏推荐
- TCP連接與斷開,狀態遷移圖詳解
- Gof23 - abstract factory pattern
- SHOW语句用法补充
- Go learning notes 1.3- data types of variables
- Interviewer: what is the difference between a test plan and a test plan?
- How to transfer database data to check box
- China polyimide film market demand and future investment risk outlook report 2022-2027
- 解决新版谷歌Chrome浏览器Cookie跨域失效问题
- Hudi compilation of data Lake architecture
- Play with a variety of application scenarios and share secrets with Kwai MMU
猜你喜欢

Kotlin compose state recovery remembersaveable and remember

营销技巧:相比较讲产品的优点,更有效的是要向客户展示使用效果

Hudi compilation of data Lake architecture

SecureCRT运行SparkShell 删除键出现乱码的解法

If you meet a female driver who drives didi as an amateur, you can earn 500 yuan a day!

MySQL基础用法01

Jasminum plug-in of Zotero document management tool

C nuget offline cache package installation

【golang】time相关
Installing rainbow in various kubernetes with Helm
随机推荐
Play with a variety of application scenarios and share secrets with Kwai MMU
Phantom star VR equipment product details II: dark battlefield
C# Nuget离线缓存包安装
Bugku练习题---MISC---富强民主
TS泛型在函数、接口、类中使用介绍
稀疏数组sparsearray
我在腾讯做测试的这几年...
淺析一道經典題
Get the first and last days of the current month, and the first and last days of the previous month
Format one insert per line using mysqldump- Using mysqldump to format one insert per line?
LightGBM--调参笔记
Solution of garbled code in sparkshell deletion key of SecureCRT
Market trend report, technical innovation and market forecast of microencapsulated chemical pesticides in China
What is data mining?
Kotlin Compose 状态恢复 rememberSaveable 与 remember
浅析一道经典题
在公司逮到一个阿里10年的测试开发,聊过之后大彻大悟...
Connexion et déconnexion TCP, détails du diagramme de migration de l'état
Gof23 - abstract factory pattern
Experience the new features of Milvus 2.0 together