当前位置:网站首页>Vins estimator 5-point method

Vins estimator 5-point method

2022-06-09 02:28:00 xiaoma_ bk

Polar geometry

  • In the first frame coordinate system , Set up space : P = [ x , y , z ] T {P=[x,y,z]^T} P=[x,y,z]T

  • Pinhole based camera , The position of the two pixels s 1 p 1 = K P s_1 p_1 = KP s1p1=KP and s 2 p 2 = K ( R P + t ) s_2 p_2 = K(RP+t) s2p2=K(RP+t)

    • among , R , t R,t R,t Is the motion of two coordinate systems
    • If you use Homogeneous coordinates , be : p 1 = K P p_1 = KP p1=KP and p_2 = K(RP+t)$
  • take x 1 = K − 1 p 1 x_1 = K^{-1}p_1 x1=K1p1 , x 1 = K − 1 p 2 x_1 = K^{-1}p_2 x1=K1p2

    • Then there are : x 2 = R x 1 + t {x_2 = Rx_1 + t} x2=Rx1+t
    • Multiply both sides at the same time t ∧ {t^\wedge} t, Yes : t ∧ x 2 = t ∧ R x 1 {t^\wedge x_2 = t^\wedge Rx_1} tx2=tRx1
    • Multiply both sides at the same time x 2 T x_2^T x2T, Yes : x 2 T t ∧ x 2 = x 2 T t ∧ R x 1 {x_2^Tt^\wedge x_2 = x_2^T t^\wedge Rx_1} x2Ttx2=x2TtRx1
    • because t ∧ x 2 {t^\wedge x_2} tx2 Is with the t , x 2 t,x_2 t,x2 Vectors that are all vertical , Then the coordinates are 0, Yes : x 2 T t ∧ R x 1 = 0 {x_2^T t^\wedge Rx_1=0} x2TtRx1=0
  • obtain : p 2 T K − T t ∧ R K − 1 p 1 = 0 {p_2^T K^{-T} t^\wedge RK^{-1}p_1 =0} p2TKTtRK1p1=0

    • This formula is a contrapolar geometric constraint

    • E = t ∧ R E=t^\wedge R E=tR Is the essential matrix

    • F = K − T E K − 1 {F=K^{-T}EK^{-1}} F=KTEK1 Based on the matrix

    • p 2 T F p 1 = 0 {p_2^T F p_1 =0} p2TFp1=0

  • because E , F E,F E,F Only the internal parameters of the camera are different , The internal reference is usually in slam It's known that , So in practice, it is easier to use E E E.

5 Point method

  • Constraint solving :
    • First, constrain the polar geometry : p 2 T F p = 0 {p_2^T F p =0} p2TFp=0
    • The basic matrix can be considered without knowing the calibration matrix , Besides , if k 1 , k 2 {k_1,k_2} k1,k2 It is known that , Call the camera calibrated , Again , Suppose the point on the image p , p 2 p,p_2 p,p2 Already booked , So the antipolar Geometry : p 2 T E p = 0 {p_2^T E p =0} p2TEp=0
    • If the E E E Of 9 Member variables are fully expanded , We get a linear equation , Every match point , A linear equation can be obtained ,5 Click to get 5 An equation .
    • but E E E yes 3 × 3 3 \times 3 3×3 Matrix , Yes 9 Member variables , Only 5 A linear equation , So we get a linear solution space , This solution space has 4 A degree of freedom .
    • So we get the linear solution space : E = x X + y Y + z Z + w W {E=xX+yY+zZ +wW} E=xX+yY+zZ+wW

// Todo

原网站

版权声明
本文为[xiaoma_ bk]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/159/202206081257150937.html