当前位置:网站首页>[control] multi agent system summary. 5. system consolidation.
[control] multi agent system summary. 5. system consolidation.
2022-06-30 04:36:00 【Zhao-Jichao】
【 control 】 Summary of multi-agent system .1. System model .2. Control objectives .3. Model transformation .
【 control 】 Summary of multi-agent system .4. Control agreement .
【 control 】 Summary of multi-agent system .5. System merge .
List of articles
5. System merge
5.1 First order one-dimensional system
[ p ˙ 1 p ˙ 2 p ˙ 3 ] = 0 N × N ⋅ X + I N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1 \\ \dot{p}_2 \\ \dot{p}_3 \\ \end{matrix}\right] &= 0_{N \times N} \cdot X + I_N \cdot U \end{aligned} \tag{} ⎣⎡p˙1p˙2p˙3⎦⎤=0N×N⋅X+IN⋅U()
[ u 1 u 2 u 3 ] = − α L ⋅ X ( ) \begin{aligned} \left[\begin{matrix} u_1 \\ u_2 \\ u_3 \\ \end{matrix}\right] &= -\alpha L \cdot X \end{aligned} \tag{} ⎣⎡u1u2u3⎦⎤=−αL⋅X()
[ p ˙ 1 p ˙ 2 p ˙ 3 ] = 0 N × N ⋅ X + I N ⋅ U = 0 N × N ⋅ X + I N ⋅ ( − α L ⋅ X ) = − α L ⋅ X ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1 \\ \dot{p}_2 \\ \dot{p}_3 \\ \end{matrix}\right] &= 0_{N \times N} \cdot X + I_N \cdot U \\ &= 0_{N \times N} \cdot X + I_N \cdot (-\alpha L \cdot X) \\ &= \red{-\alpha L \cdot X} \end{aligned} \tag{} ⎣⎡p˙1p˙2p˙3⎦⎤=0N×N⋅X+IN⋅U=0N×N⋅X+IN⋅(−αL⋅X)=−αL⋅X()
5.2 First order two-dimensional system
5.2.1 Mode one
[ p ˙ 1 x p ˙ 1 y p ˙ 2 x p ˙ 2 y p ˙ 3 x p ˙ 3 y ] = 0 2 N × 2 N ⋅ X + I 2 N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_1^y \\ \dot{p}_2^x \\ \dot{p}_2^y \\ \dot{p}_3^x \\ \dot{p}_3^y \\ \end{matrix}\right] &= 0_{2N \times 2N} \cdot X + I_{2N} \cdot U \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡p˙1xp˙1yp˙2xp˙2yp˙3xp˙3y⎦⎥⎥⎥⎥⎥⎥⎤=02N×2N⋅X+I2N⋅U()
[ u 1 x u 1 y u 2 x u 2 y u 3 x u 3 y ] = − α L ⊗ I 2 ⋅ X ( ) \begin{aligned} \left[\begin{matrix} u_1^x \\ u_1^y \\ u_2^x \\ u_2^y \\ u_3^x \\ u_3^y \\ \end{matrix}\right] &= -\alpha L \otimes I_2 \cdot X \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡u1xu1yu2xu2yu3xu3y⎦⎥⎥⎥⎥⎥⎥⎤=−αL⊗I2⋅X()
[ p ˙ 1 x p ˙ 1 y p ˙ 2 x p ˙ 2 y p ˙ 3 x p ˙ 3 y ] = 0 2 N × 2 N ⋅ X + I 2 N ⋅ U = 0 2 N × 2 N ⋅ X + I 2 N ⋅ ( − α L ⊗ I 2 ⋅ X ) = − α L ⊗ I 2 ⋅ X ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_1^y \\ \dot{p}_2^x \\ \dot{p}_2^y \\ \dot{p}_3^x \\ \dot{p}_3^y \\ \end{matrix}\right] &= 0_{2N \times 2N} \cdot X + I_{2N} \cdot U \\ &= 0_{2N \times 2N} \cdot X + I_{2N} \cdot (-\alpha L \otimes I_2 \cdot X) \\ &= \red{-\alpha L \otimes I_2 \cdot X} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡p˙1xp˙1yp˙2xp˙2yp˙3xp˙3y⎦⎥⎥⎥⎥⎥⎥⎤=02N×2N⋅X+I2N⋅U=02N×2N⋅X+I2N⋅(−αL⊗I2⋅X)=−αL⊗I2⋅X()
5.2.2 Mode two
The system model of multiple agents is
[ p ˙ 1 x p ˙ 2 x p ˙ 3 x p ˙ 1 y p ˙ 2 y p ˙ 3 y ] = 0 2 N × 2 N ⋅ X + I 2 N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_2^x \\ \dot{p}_3^x \\ \dot{p}_1^y \\ \dot{p}_2^y \\ \dot{p}_3^y \\ \end{matrix}\right] &= 0_{2N \times 2N} \cdot X + I_{2N} \cdot U \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡p˙1xp˙2xp˙3xp˙1yp˙2yp˙3y⎦⎥⎥⎥⎥⎥⎥⎤=02N×2N⋅X+I2N⋅U()
[ u 1 x u 2 x u 3 x u 1 y u 2 y u 3 y ] = I 2 ⊗ − α L ⋅ X ( ) \begin{aligned} \left[\begin{matrix} u_1^x \\ u_2^x \\ u_3^x \\ u_1^y \\ u_2^y \\ u_3^y \\ \end{matrix}\right] &= I_2 \otimes -\alpha L \cdot X \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡u1xu2xu3xu1yu2yu3y⎦⎥⎥⎥⎥⎥⎥⎤=I2⊗−αL⋅X()
[ p ˙ 1 x p ˙ 2 x p ˙ 3 x p ˙ 1 y p ˙ 2 y p ˙ 3 y ] = 0 2 N × 2 N ⋅ X + I 2 N ⋅ U = 0 2 N × 2 N ⋅ X + I 2 N ⋅ ( I 2 ⊗ − α L ⋅ X ) = I 2 ⊗ − α L ⋅ X ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_2^x \\ \dot{p}_3^x \\ \dot{p}_1^y \\ \dot{p}_2^y \\ \dot{p}_3^y \\ \end{matrix}\right] &= 0_{2N \times 2N} \cdot X + I_{2N} \cdot U \\ &= 0_{2N \times 2N} \cdot X + I_{2N} \cdot (I_2 \otimes -\alpha L \cdot X) \\ &= \red{I_2 \otimes -\alpha L \cdot X} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡p˙1xp˙2xp˙3xp˙1yp˙2yp˙3y⎦⎥⎥⎥⎥⎥⎥⎤=02N×2N⋅X+I2N⋅U=02N×2N⋅X+I2N⋅(I2⊗−αL⋅X)=I2⊗−αL⋅X()
5.3 Second order one-dimensional system
5.3.1 Mode one
[ p ˙ 1 v ˙ 1 p ˙ 2 v ˙ 2 p ˙ 3 v ˙ 3 ] = I N ⊗ [ 0 1 0 0 ] ⋅ X + I N ⊗ [ 0 1 ] ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1 \\ \dot{v}_1 \\ \dot{p}_2 \\ \dot{v}_2 \\ \dot{p}_3 \\ \dot{v}_3 \\ \end{matrix}\right] &= I_N \otimes \left[\begin{matrix} 0 & 1 \\ 0 & 0 \\ \end{matrix}\right] \cdot X + I_N \otimes \left[\begin{matrix} 0 \\ 1 \\ \end{matrix}\right] \cdot U \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡p˙1v˙1p˙2v˙2p˙3v˙3⎦⎥⎥⎥⎥⎥⎥⎤=IN⊗[0010]⋅X+IN⊗[01]⋅U()
[ u 1 u 2 u 3 ] = ( − L ) ⊗ [ α β ] ⋅ X ( ) \begin{aligned} \left[\begin{matrix} u_1 \\ u_2 \\ u_3 \\ \end{matrix}\right] &= (-L) \otimes \left[\begin{matrix} \alpha & \beta \end{matrix}\right] \cdot X \end{aligned} \tag{} ⎣⎡u1u2u3⎦⎤=(−L)⊗[αβ]⋅X()
[ p ˙ 1 v ˙ 1 p ˙ 2 v ˙ 2 p ˙ 3 v ˙ 3 ] = I N ⊗ [ 0 1 0 0 ] ⋅ X + I N ⊗ [ 0 1 ] ⋅ U = I N ⊗ [ 0 1 0 0 ] ⋅ X + I N ⊗ [ 0 1 ] ⋅ ( ( − L ) ⊗ [ α β ] ⋅ X ) ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1 \\ \dot{v}_1 \\ \dot{p}_2 \\ \dot{v}_2 \\ \dot{p}_3 \\ \dot{v}_3 \\ \end{matrix}\right] &= I_N \otimes \left[\begin{matrix} 0 & 1 \\ 0 & 0 \\ \end{matrix}\right] \cdot X + I_N \otimes \left[\begin{matrix} 0 \\ 1 \\ \end{matrix}\right] \cdot U \\ &= I_N \otimes \left[\begin{matrix} 0 & 1 \\ 0 & 0 \\ \end{matrix}\right] \cdot X + I_N \otimes \left[\begin{matrix} 0 \\ 1 \\ \end{matrix}\right] \cdot ((-L) \otimes \left[\begin{matrix} \alpha & \beta \end{matrix}\right] \cdot X) \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡p˙1v˙1p˙2v˙2p˙3v˙3⎦⎥⎥⎥⎥⎥⎥⎤=IN⊗[0010]⋅X+IN⊗[01]⋅U=IN⊗[0010]⋅X+IN⊗[01]⋅((−L)⊗[αβ]⋅X)()
5.3.2 Mode two
[ p ˙ 1 p ˙ 2 p ˙ 3 v ˙ 1 v ˙ 2 v ˙ 3 ] = [ 0 1 0 0 ] ⊗ I N ⋅ X + [ 0 1 ] ⊗ I N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1 \\ \dot{p}_2 \\ \dot{p}_3 \\ \dot{v}_1 \\ \dot{v}_2 \\ \dot{v}_3 \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 1 \\ 0 & 0 \\ \end{matrix}\right] \otimes I_N \cdot X + \left[\begin{matrix} 0 \\ 1 \\ \end{matrix}\right] \otimes I_N \cdot U \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡p˙1p˙2p˙3v˙1v˙2v˙3⎦⎥⎥⎥⎥⎥⎥⎤=[0010]⊗IN⋅X+[01]⊗IN⋅U()
[ u 1 u 2 u 3 ] = [ α β ] ⊗ ( − L ) ⋅ X ( ) \begin{aligned} \left[\begin{matrix} u_1 \\ u_2 \\ u_3 \\ \end{matrix}\right] &= \left[\begin{matrix} \alpha & \beta \end{matrix}\right] \otimes (-L) \cdot X \end{aligned} \tag{} ⎣⎡u1u2u3⎦⎤=[αβ]⊗(−L)⋅X()
[ p ˙ 1 p ˙ 2 p ˙ 3 v ˙ 1 v ˙ 2 v ˙ 3 ] = [ 0 1 0 0 ] ⊗ I N ⋅ X + [ 0 1 ] ⊗ I N ⋅ U = [ 0 N × N I N − α L − β L ] ⋅ X ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1 \\ \dot{p}_2 \\ \dot{p}_3 \\ \dot{v}_1 \\ \dot{v}_2 \\ \dot{v}_3 \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 1 \\ 0 & 0 \\ \end{matrix}\right] \otimes I_N \cdot X + \left[\begin{matrix} 0 \\ 1 \\ \end{matrix}\right] \otimes I_N \cdot U \\ &= \red{ \left[\begin{matrix} 0_{N \times N} & I_N \\ -\alpha L & -\beta L \\ \end{matrix}\right] \cdot X} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡p˙1p˙2p˙3v˙1v˙2v˙3⎦⎥⎥⎥⎥⎥⎥⎤=[0010]⊗IN⋅X+[01]⊗IN⋅U=[0N×N−αLIN−βL]⋅X()
5.4 Second order two-dimensional system
5.4.1 Mode one
5.4.2 Mode two
[ p ˙ 1 x p ˙ 2 x p ˙ 3 x p ˙ 1 y p ˙ 2 y p ˙ 3 y v ˙ 1 x v ˙ 2 x v ˙ 3 x v ˙ 1 y v ˙ 2 y v ˙ 3 y ] = [ 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ] ⊗ I N ⋅ X + [ 0 0 0 0 1 0 0 1 ] ⊗ I N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_2^x \\ \dot{p}_3^x \\ \dot{p}_1^y \\ \dot{p}_2^y \\ \dot{p}_3^y \\ \dot{v}_1^x \\ \dot{v}_2^x \\ \dot{v}_3^x \\ \dot{v}_1^y \\ \dot{v}_2^y \\ \dot{v}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{matrix}\right] \otimes I_N \cdot X + \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \otimes I_N \cdot U \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p˙1xp˙2xp˙3xp˙1yp˙2yp˙3yv˙1xv˙2xv˙3xv˙1yv˙2yv˙3y⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎡0000000010000100⎦⎥⎥⎤⊗IN⋅X+⎣⎢⎢⎡00100001⎦⎥⎥⎤⊗IN⋅U()
[ u 1 x u 2 x u 3 x u 1 y u 2 y u 3 y ] = [ α β ] ⊗ I 2 ⊗ ( − L ) ⋅ X ( ) \begin{aligned} \left[\begin{matrix} u_1^x \\ u_2^x \\ u_3^x \\ u_1^y \\ u_2^y \\ u_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} \alpha & \beta \end{matrix}\right] \otimes I_2 \otimes (-L) \cdot X \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎡u1xu2xu3xu1yu2yu3y⎦⎥⎥⎥⎥⎥⎥⎤=[αβ]⊗I2⊗(−L)⋅X()
[ p ˙ 1 x p ˙ 2 x p ˙ 3 x p ˙ 1 y p ˙ 2 y p ˙ 3 y v ˙ 1 x v ˙ 2 x v ˙ 3 x v ˙ 1 y v ˙ 2 y v ˙ 3 y ] = [ 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ] ⊗ I N ⋅ X + [ 0 0 0 0 1 0 0 1 ] ⊗ I N ⋅ U = [ 0 N × N 0 N × N I N 0 N × N 0 N × N 0 N × N 0 N × N I N − α L 0 N × N − β L 0 N × N 0 N × N − α L 0 N × N − β L ] ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_2^x \\ \dot{p}_3^x \\ \dot{p}_1^y \\ \dot{p}_2^y \\ \dot{p}_3^y \\ \dot{v}_1^x \\ \dot{v}_2^x \\ \dot{v}_3^x \\ \dot{v}_1^y \\ \dot{v}_2^y \\ \dot{v}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{matrix}\right] \otimes I_N \cdot X + \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \otimes I_N \cdot U \\ &= \red{ \left[\begin{matrix} 0_{N \times N} & 0_{N \times N} & I_{N} & 0_{N \times N} \\ 0_{N \times N} & 0_{N \times N} & 0_{N \times N} & I_{N} \\ -\alpha L & 0_{N \times N} & -\beta L & 0_{N \times N} \\ 0_{N \times N} & -\alpha L & 0_{N \times N} & -\beta L \\ \end{matrix}\right]} \end{aligned} \tag{} ⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p˙1xp˙2xp˙3xp˙1yp˙2yp˙3yv˙1xv˙2xv˙3xv˙1yv˙2yv˙3y⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎡0000000010000100⎦⎥⎥⎤⊗IN⋅X+⎣⎢⎢⎡00100001⎦⎥⎥⎤⊗IN⋅U=⎣⎢⎢⎡0N×N0N×N−αL0N×N0N×N0N×N0N×N−αLIN0N×N−βL0N×N0N×NIN0N×N−βL⎦⎥⎥⎤()
边栏推荐
- QT 6.3.1conan software package release
- What is the difference between synchronized and lock
- Myrpc version 2
- FortiGate performs DNAT mapping, and intranet users cannot normally access the mapping
- Explain the underlying principles of JVM garbage collection in simple terms
- Method of applying for code signing certificate by enterprise
- FortiGate firewall modifies the default timeout of a session
- Difference between TCP three handshakes and four waves and tcp/udp
- My idea configuration
- Qt 6.3.1Conan软件包发布
猜你喜欢

【Paper】2013_ An efficient model predictive control scheme for an unmanned quadrotor helicopter
![Tea mall system based on SSM framework [project source code + database script + report]](/img/d9/0a46c0da9839a7186bd3a9ae55f0a5.png)
Tea mall system based on SSM framework [project source code + database script + report]

BeanFactory创建流程

Geotrustov wildcard

Interview topic of MySQL

Learn about threads

Blocking queue example

What is an optocoupler circuit and what should be paid attention to in actual use?

破局存量客群营销,试一下客户分群管理(含聚类模型等实操效果评估)

JS inheritance
随机推荐
OneNote software
[UGV] schematic diagram of UGV version 32
SQL error caused by entity class: Oracle "ora-00904" error: possible case of invalid identifier
JS deconstruction assignment
Learning about signals
What is the difference between synchronized and lock
internship:接口案例实现
Myrpc version 4
Network layer protocol hardware
Intern method of string
Introduction to system programming
Redis implements SMS login function (II) redis implements login function
Mongodb learning
How to renew an SSL certificate
Detailed explanation of network layer
BeanFactory创建流程
FortiGate firewall modifies the default timeout of a session
Myrpc version 1
How to use div boxes to simulate line triangles
Read / write lock example