当前位置:网站首页>[semantic segmentation] Introduction to mapillary dataset
[semantic segmentation] Introduction to mapillary dataset
2022-07-29 06:03:00 【Dull cat】
List of articles

One 、 brief introduction
Mapillary Vistas Data set containing 66 Class Co 25,000 Zhang high-resolution street scene data , Among them is 37 A class is a label distinguished by instances . What is the total amount of data cityscapes Of 5 Twice as many , Including different weather 、 season 、 Time . Acquisition methods include mobile phones 、 The camera 、 The computer 、 Motion camera, etc .
- Total data :25k
- Total training :18k
- Total amount of validation :2k
- Total test amount :5k
Official website :https://www.mapillary.com/
Two 、 Category
Each major category and its corresponding sub category target
Serial number | Category |
---|---|
0 | bird |
1 | ground animal |
2 | curb |
3 | fence |
4 | guard rail |
5 | barrier |
6 | wall |
7 | bike lane |
8 | crosswalk-plain |
9 | curb cut |
10 | parking |
11 | pedestrian area |
12 | rail track |
13 | road |
14 | service lane |
15 | sidewalk |
16 | bridge |
17 | building |
18 | tunnel |
19 | person |
20 | bicyclist |
21 | motorcyclist |
22 | other rider |
23 | lane marking - crosswalk |
24 | lane marking - general |
25 | mountain |
26 | sand |
27 | sky |
28 | snow |
29 | terrain |
30 | vegetation |
31 | water |
32 | banner |
33 | bench |
34 | bike rack |
35 | billboard |
36 | catch basin |
37 | CCTV camera |
38 | fire hydrant |
39 | junction box |
40 | mailbox |
41 | manhole |
42 | phone booth |
43 | phthole |
44 | street light |
45 | pole |
46 | traffic sign frame |
47 | utility pole |
48 | traffic light |
49 | traffic sign(back) |
50 | traffic sign(front) |
51 | trash can |
52 | bicycle |
53 | boat |
54 | bus |
55 | car |
56 | caravan |
57 | motorcycle |
58 | on rails |
59 | other vehicle |
60 | trailer |
61 | truck |
62 | wheeled slow |
63 | car mount |
64 | ego vehicle |
65 | unlabeled |
{
"labels": [
{
"color": [
165,
42,
42
],
"instances": true,
"readable": "Bird",
"name": "animal--bird",
"evaluate": true
},
{
"color": [
0,
192,
0
],
"instances": true,
"readable": "Ground Animal",
"name": "animal--ground-animal",
"evaluate": true
},
{
"color": [
196,
196,
196
],
"instances": false,
"readable": "Curb",
"name": "construction--barrier--curb",
"evaluate": true
},
{
"color": [
190,
153,
153
],
"instances": false,
"readable": "Fence",
"name": "construction--barrier--fence",
"evaluate": true
},
{
"color": [
180,
165,
180
],
"instances": false,
"readable": "Guard Rail",
"name": "construction--barrier--guard-rail",
"evaluate": true
},
{
"color": [
90,
120,
150
],
"instances": false,
"readable": "Barrier",
"name": "construction--barrier--other-barrier",
"evaluate": true
},
{
"color": [
102,
102,
156
],
"instances": false,
"readable": "Wall",
"name": "construction--barrier--wall",
"evaluate": true
},
{
"color": [
128,
64,
255
],
"instances": false,
"readable": "Bike Lane",
"name": "construction--flat--bike-lane",
"evaluate": true
},
{
"color": [
140,
140,
200
],
"instances": true,
"readable": "Crosswalk - Plain",
"name": "construction--flat--crosswalk-plain",
"evaluate": true
},
{
"color": [
170,
170,
170
],
"instances": false,
"readable": "Curb Cut",
"name": "construction--flat--curb-cut",
"evaluate": true
},
{
"color": [
250,
170,
160
],
"instances": false,
"readable": "Parking",
"name": "construction--flat--parking",
"evaluate": true
},
{
"color": [
96,
96,
96
],
"instances": false,
"readable": "Pedestrian Area",
"name": "construction--flat--pedestrian-area",
"evaluate": true
},
{
"color": [
230,
150,
140
],
"instances": false,
"readable": "Rail Track",
"name": "construction--flat--rail-track",
"evaluate": true
},
{
"color": [
128,
64,
128
],
"instances": false,
"readable": "Road",
"name": "construction--flat--road",
"evaluate": true
},
{
"color": [
110,
110,
110
],
"instances": false,
"readable": "Service Lane",
"name": "construction--flat--service-lane",
"evaluate": true
},
{
"color": [
244,
35,
232
],
"instances": false,
"readable": "Sidewalk",
"name": "construction--flat--sidewalk",
"evaluate": true
},
{
"color": [
150,
100,
100
],
"instances": false,
"readable": "Bridge",
"name": "construction--structure--bridge",
"evaluate": true
},
{
"color": [
70,
70,
70
],
"instances": false,
"readable": "Building",
"name": "construction--structure--building",
"evaluate": true
},
{
"color": [
150,
120,
90
],
"instances": false,
"readable": "Tunnel",
"name": "construction--structure--tunnel",
"evaluate": true
},
{
"color": [
220,
20,
60
],
"instances": true,
"readable": "Person",
"name": "human--person",
"evaluate": true
},
{
"color": [
255,
0,
0
],
"instances": true,
"readable": "Bicyclist",
"name": "human--rider--bicyclist",
"evaluate": true
},
{
"color": [
255,
0,
100
],
"instances": true,
"readable": "Motorcyclist",
"name": "human--rider--motorcyclist",
"evaluate": true
},
{
"color": [
255,
0,
200
],
"instances": true,
"readable": "Other Rider",
"name": "human--rider--other-rider",
"evaluate": true
},
{
"color": [
200,
128,
128
],
"instances": true,
"readable": "Lane Marking - Crosswalk",
"name": "marking--crosswalk-zebra",
"evaluate": true
},
{
"color": [
255,
255,
255
],
"instances": false,
"readable": "Lane Marking - General",
"name": "marking--general",
"evaluate": true
},
{
"color": [
64,
170,
64
],
"instances": false,
"readable": "Mountain",
"name": "nature--mountain",
"evaluate": true
},
{
"color": [
230,
160,
50
],
"instances": false,
"readable": "Sand",
"name": "nature--sand",
"evaluate": true
},
{
"color": [
70,
130,
180
],
"instances": false,
"readable": "Sky",
"name": "nature--sky",
"evaluate": true
},
{
"color": [
190,
255,
255
],
"instances": false,
"readable": "Snow",
"name": "nature--snow",
"evaluate": true
},
{
"color": [
152,
251,
152
],
"instances": false,
"readable": "Terrain",
"name": "nature--terrain",
"evaluate": true
},
{
"color": [
107,
142,
35
],
"instances": false,
"readable": "Vegetation",
"name": "nature--vegetation",
"evaluate": true
},
{
"color": [
0,
170,
30
],
"instances": false,
"readable": "Water",
"name": "nature--water",
"evaluate": true
},
{
"color": [
255,
255,
128
],
"instances": true,
"readable": "Banner",
"name": "object--banner",
"evaluate": true
},
{
"color": [
250,
0,
30
],
"instances": true,
"readable": "Bench",
"name": "object--bench",
"evaluate": true
},
{
"color": [
100,
140,
180
],
"instances": true,
"readable": "Bike Rack",
"name": "object--bike-rack",
"evaluate": true
},
{
"color": [
220,
220,
220
],
"instances": true,
"readable": "Billboard",
"name": "object--billboard",
"evaluate": true
},
{
"color": [
220,
128,
128
],
"instances": true,
"readable": "Catch Basin",
"name": "object--catch-basin",
"evaluate": true
},
{
"color": [
222,
40,
40
],
"instances": true,
"readable": "CCTV Camera",
"name": "object--cctv-camera",
"evaluate": true
},
{
"color": [
100,
170,
30
],
"instances": true,
"readable": "Fire Hydrant",
"name": "object--fire-hydrant",
"evaluate": true
},
{
"color": [
40,
40,
40
],
"instances": true,
"readable": "Junction Box",
"name": "object--junction-box",
"evaluate": true
},
{
"color": [
33,
33,
33
],
"instances": true,
"readable": "Mailbox",
"name": "object--mailbox",
"evaluate": true
},
{
"color": [
100,
128,
160
],
"instances": true,
"readable": "Manhole",
"name": "object--manhole",
"evaluate": true
},
{
"color": [
142,
0,
0
],
"instances": true,
"readable": "Phone Booth",
"name": "object--phone-booth",
"evaluate": true
},
{
"color": [
70,
100,
150
],
"instances": false,
"readable": "Pothole",
"name": "object--pothole",
"evaluate": true
},
{
"color": [
210,
170,
100
],
"instances": true,
"readable": "Street Light",
"name": "object--street-light",
"evaluate": true
},
{
"color": [
153,
153,
153
],
"instances": true,
"readable": "Pole",
"name": "object--support--pole",
"evaluate": true
},
{
"color": [
128,
128,
128
],
"instances": true,
"readable": "Traffic Sign Frame",
"name": "object--support--traffic-sign-frame",
"evaluate": true
},
{
"color": [
0,
0,
80
],
"instances": true,
"readable": "Utility Pole",
"name": "object--support--utility-pole",
"evaluate": true
},
{
"color": [
250,
170,
30
],
"instances": true,
"readable": "Traffic Light",
"name": "object--traffic-light",
"evaluate": true
},
{
"color": [
192,
192,
192
],
"instances": true,
"readable": "Traffic Sign (Back)",
"name": "object--traffic-sign--back",
"evaluate": true
},
{
"color": [
220,
220,
0
],
"instances": true,
"readable": "Traffic Sign (Front)",
"name": "object--traffic-sign--front",
"evaluate": true
},
{
"color": [
140,
140,
20
],
"instances": true,
"readable": "Trash Can",
"name": "object--trash-can",
"evaluate": true
},
{
"color": [
119,
11,
32
],
"instances": true,
"readable": "Bicycle",
"name": "object--vehicle--bicycle",
"evaluate": true
},
{
"color": [
150,
0,
255
],
"instances": true,
"readable": "Boat",
"name": "object--vehicle--boat",
"evaluate": true
},
{
"color": [
0,
60,
100
],
"instances": true,
"readable": "Bus",
"name": "object--vehicle--bus",
"evaluate": true
},
{
"color": [
0,
0,
142
],
"instances": true,
"readable": "Car",
"name": "object--vehicle--car",
"evaluate": true
},
{
"color": [
0,
0,
90
],
"instances": true,
"readable": "Caravan",
"name": "object--vehicle--caravan",
"evaluate": true
},
{
"color": [
0,
0,
230
],
"instances": true,
"readable": "Motorcycle",
"name": "object--vehicle--motorcycle",
"evaluate": true
},
{
"color": [
0,
80,
100
],
"instances": false,
"readable": "On Rails",
"name": "object--vehicle--on-rails",
"evaluate": true
},
{
"color": [
128,
64,
64
],
"instances": true,
"readable": "Other Vehicle",
"name": "object--vehicle--other-vehicle",
"evaluate": true
},
{
"color": [
0,
0,
110
],
"instances": true,
"readable": "Trailer",
"name": "object--vehicle--trailer",
"evaluate": true
},
{
"color": [
0,
0,
70
],
"instances": true,
"readable": "Truck",
"name": "object--vehicle--truck",
"evaluate": true
},
{
"color": [
0,
0,
192
],
"instances": true,
"readable": "Wheeled Slow",
"name": "object--vehicle--wheeled-slow",
"evaluate": true
},
{
"color": [
32,
32,
32
],
"instances": false,
"readable": "Car Mount",
"name": "void--car-mount",
"evaluate": true
},
{
"color": [
120,
10,
10
],
"instances": false,
"readable": "Ego Vehicle",
"name": "void--ego-vehicle",
"evaluate": true
},
{
"color": [
0,
0,
0
],
"instances": false,
"readable": "Unlabeled",
"name": "void--unlabeled",
"evaluate": false
}
],
"version": 1.1,
"mapping": "public",
"folder_structure": "{split}/{content}/{key:.{22}}.{ext}"
}
3、 ... and 、 Annotation examples
边栏推荐
- DataX installation
- Research on the implementation principle of reentrantlock in concurrent programming learning notes
- Spring, summer, autumn and winter with Miss Zhang (5)
- [competition website] collect machine learning / deep learning competition website (continuously updated)
- Training log 4 of the project "construction of Shandong University mobile Internet development technology teaching website"
- Markdown语法
- 【CV】请问卷积核(滤波器)3*3、5*5、7*7、11*11 都是具体什么数?
- Reporting service 2016 custom authentication
- 【目标检测】Generalized Focal Loss V1
- ssm整合
猜你喜欢
Training log 6 of the project "construction of Shandong University mobile Internet development technology teaching website"
Operation commands in anaconda, such as removing old environment, adding new environment, viewing environment, installing library, cleaning cache, etc
datax安装
【DL】关于tensor(张量)的介绍和理解
How to obtain openid of wechat applet in uni app project
与张小姐的春夏秋冬(3)
Activity交互问题,你确定都知道?
Ribbon learning notes II
MySql统计函数COUNT详解
这些你一定要知道的进程知识
随机推荐
mysql 的show profiles 使用。
【CV】请问卷积核(滤波器)3*3、5*5、7*7、11*11 都是具体什么数?
ReportingService WebService Form身份验证
datax安装
Analysis on the principle of flow
Research on the implementation principle of reentrantlock in concurrent programming learning notes
【卷积核设计】Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs
【目标检测】Generalized Focal Loss V1
Huawei 2020 school recruitment written test programming questions read this article is enough (Part 2)
【ML】机器学习模型之PMML--概述
Detailed explanation of MySQL statistical function count
深入理解MMAP原理,让大厂都爱不释手的技术
【语义分割】SETR_Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformer
yum本地源制作
【Attention】Visual Attention Network
PHP write a diaper to buy the lowest price in the whole network
Simple optimization of interesting apps for deep learning (suitable for novices)
Performance comparison | FASS iSCSI vs nvme/tcp
【DL】关于tensor(张量)的介绍和理解
Machine learning makes character recognition easier: kotlin+mvvm+ Huawei ml Kit