当前位置:网站首页>Goldbach's conjecture and the ring of integers
Goldbach's conjecture and the ring of integers
2022-08-11 06:33:00 【cjx__】
Goldbach's conjecture and the ring of integers
“哥德巴赫猜想:每一个大于2All even numbers can be written as the sum of two prime numbers.
Its equivalent formula can be :
L + R = 2 M L + a = M L + 2 a = R L + R = 2M \\ L + a = M \\ L + 2a = R L+R=2ML+a=ML+2a=R
L , R L,R L,R 是素数, a a a 是 L , M , R L,M,R L,M,Rspace, M M M 是大于3的自然数.
From the formula we know every natural number M M MA pair of prime numbers appearing at the same distance on both sides is established,推广 L L LAvailable numbers:
M R L 1 + 1 L 1 + 2 L 2 + 1 L 2 + 4 L 3 + 1 L 3 + 6 … … L a + 1 L a + 2 a \begin{matrix} M & R \\ \over & \over \\ L_1 + 1 & L_1 + 2 \\ L_2 + 1 & L_2 + 4 \\ L_3 + 1 & L_3 + 6 \\ \dots & \dots \\ L_a + 1 & L_a + 2a \\ \end{matrix} ML1+1L2+1L3+1…La+1RL1+2L2+4L3+6…La+2a
L a = { 2 , 3 , . . . , a } , 2 a ∈ 2 N , 1 ≤ a ≤ L a L_a=\{2,3,...,a\}, 2a\in 2N, 1 \le a \le L_a La={ 2,3,...,a},2a∈2N,1≤a≤La
M 化 为 环 { P 1 N + a 1 P 2 N + a 2 1 < a x < P x P x + a n Minto a ring \left\{ \begin{array}{lr} P_1N+a_1 \\ P_2N+a_2 & & 1 \lt a_x \lt P_x\\ P_x + a_n \end{array} \right . M化为环⎩⎨⎧P1N+a1P2N+a2Px+an1<ax<Px
R 化 为 环 { P 1 N + a 1 P 2 N + a 2 1 < a x < P x P x + a n Rinto a ring \left\{ \begin{array}{lr} P_1N+a_1 \\ P_2N+a_2 & & 1 \lt a_x \lt P_x\\ P_x + a_n \end{array} \right . R化为环⎩⎨⎧P1N+a1P2N+a2Px+an1<ax<Px
P x N + a n 为 整 数 循 环 P_xN+a_nLoop for integers PxN+an为整数循环
假设: 当且仅当 ∀ P N + 2 a n ∉ P \forall P_N + 2a_n \notin P ∀PN+2an∈/P 时 ∀ R ∉ P \forall R \notin P ∀R∈/P
To make current all 2 a n ∈ P x N 2a_n \in P_xN 2an∈PxNback in the ring
但是由于 ∏ P x + 1 ∉ P \prod P_x + 1 \notin P ∏Px+1∈/P, 所以 ∀ P x N + 2 a n ∈ P \forall P_xN + 2a_n \in P ∀PxN+2an∈P 不成立, 即 ∃ R ∈ P \exist R \in P ∃R∈P, It can be proved that the guess is established.
例如: M = 7 M=7 M=7时
{ L M = 7 R 2 2 N + 1 2 N + 2 3 3 N + 1 3 N + 2 存 在 L ∈ P 同 时 R ∈ P , ( L = 3 , R = 11 ) 5 5 N + 2 5 N + 4 \left\{ \begin{array}{lr} L & M=7 & R \\ 2 & 2N+1 & 2N+2 \\ 3 & 3N+1 & 3N+2 &&& 存在L\in P同时R\in P,(L=3,R=11) \\ 5 & 5N+2 & 5N+4 \end{array} \right . ⎩⎪⎪⎨⎪⎪⎧L235M=72N+13N+15N+2R2N+23N+25N+4存在L∈P同时R∈P,(L=3,R=11)
——Gechai is like an abyss,There may be gems in the dark,Mysterious and terrifying.
边栏推荐
猜你喜欢

OpenMLDB:线上线下一致的生产级特征计算平台

win10 配置tensorflow(GPU) anaconda3 cuda9.0 cudnn for 9.0

开源之夏 2022 火热来袭 | 欢迎报名 OpenMLDB 社区项目~

音乐竞品分析:酷狗、QQ音乐、网易云、酷我、汽水音乐

Kotlin 增量编译的新方式 | 技术解析

vscode插件开发——代码提示、代码补全、代码分析

Wisdom construction site safety helmet identification system

微文案也能提升用户体验

STM32 基于固件库的工程模板的建立

stm32-WS2812 PWM+DMA(自己写库函数)
随机推荐
OpenMLDB Pulsar Connector:高效打通实时数据到特征工程
防盗链——防止其他页面通过url直接访问本站资源
编译异常解决
音乐竞品分析:酷狗、QQ音乐、网易云、酷我、汽水音乐
Tinker接入全流程---编译篇
电商机会:私域
自定义形状seekbar学习
论文解读:跨模态/多光谱/多模态检测 Cross-Modality Fusion Transformer for Multispectral Object Detection
STM32-中断优先级管理NVIC
Ubuntu下安装mysql笔记
C语言实现猜数字(附带源码,可直接运行)
typescript学习日记,从基础到进阶(第二章)
论文解读:GAN与检测网络多任务/SOD-MTGAN: Small Object Detection via Multi-Task Generative Adversarial Network
Jetpack之dataBinding
产品如何拟定优化方案?
CMT2380F32模块开发7-reset例程
场景驱动的特征计算方式OpenMLDB,高效实现“现算先用”
【调试记录1】提高MC3172浮点运算能力,IQmath库的获取与导入使用教程
STM32F407-浅~~析UART异步通信&USART_Init函数入口参数
JVM调优整理