当前位置:网站首页>【Debias】Model-Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in RS(KDD‘21)
【Debias】Model-Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in RS(KDD‘21)
2022-07-25 12:00:00 【chad_ lee】
Model-Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in Recommender System (KDD’21)

chart a It is the assumption of our general recommendation model , That is, the matching degree between users and items can reflect whether there will be interaction . But in fact, it should be as shown in the figure c Shown , Interaction is not only related to the degree of matching , It is also related to the deviation between the user and the item itself : Popularity of items 、 Whether users like popular items . Therefore, the recommended model should be modified to :
among user module and item module It's a mlp, The output of the recommended model should be :
y ^ u i = y ^ k ∗ σ ( y ^ i ) ∗ σ ( y ^ u ) \hat{y}_{u i}=\hat{y}_{k} * \sigma\left(\hat{y}_{i}\right) * \sigma\left(\hat{y}_{u}\right) y^ui=y^k∗σ(y^i)∗σ(y^u)
The loss function is designed as :
L O = ∑ ( u , i ) ∈ D − y u i log ( σ ( y ^ u i ) ) − ( 1 − y u i ) log ( 1 − σ ( y ^ u i ) ) L U = ∑ ( u , i ) ∈ D − y u i log ( σ ( y ^ u ) ) − ( 1 − y u i ) log ( 1 − σ ( y ^ u ) ) L I = ∑ ( u , i ) ∈ D − y u i log ( σ ( y ^ i ) ) − ( 1 − y u i ) log ( 1 − σ ( y ^ i ) ) L = L O + α ∗ L I + β ∗ L U \begin{aligned} L_{O}&=\sum_{(u, i) \in D}-y_{u i} \log \left(\sigma\left(\hat{y}_{u i}\right)\right)-\left(1-y_{u i}\right) \log \left(1-\sigma\left(\hat{y}_{u i}\right)\right)\\ L_{U} &=\sum_{(u, i) \in D}-y_{u i} \log \left(\sigma\left(\hat{y}_{u}\right)\right)-\left(1-y_{u i}\right) \log \left(1-\sigma\left(\hat{y}_{u}\right)\right) \\ L_{I} &=\sum_{(u, i) \in D}-y_{u i} \log \left(\sigma\left(\hat{y}_{i}\right)\right)-\left(1-y_{u i}\right) \log \left(1-\sigma\left(\hat{y}_{i}\right)\right)\\ L&=L_{O}+\alpha * L_{I}+\beta * L_{U} \end{aligned} LOLULIL=(u,i)∈D∑−yuilog(σ(y^ui))−(1−yui)log(1−σ(y^ui))=(u,i)∈D∑−yuilog(σ(y^u))−(1−yui)log(1−σ(y^u))=(u,i)∈D∑−yuilog(σ(y^i))−(1−yui)log(1−σ(y^i))=LO+α∗LI+β∗LU
So in order to eliminate the influence of users and items , The unbiased prediction output should be :
y ^ k ∗ σ ( y ^ i ) ∗ σ ( y ^ u ) − c ∗ σ ( y ^ i ) ∗ σ ( y ^ u ) \hat{y}_{k} * \sigma\left(\hat{y}_{i}\right) * \sigma\left(\hat{y}_{u}\right)-c * \sigma\left(\hat{y}_{i}\right) * \sigma\left(\hat{y}_{u}\right) y^k∗σ(y^i)∗σ(y^u)−c∗σ(y^i)∗σ(y^u)
边栏推荐
- 30套中国风PPT/创意PPT模板
- The first C language program (starting from Hello World)
- Web APIs(获取元素 事件基础 操作元素)
- [MySQL 17] installation exception: could not open file '/var/log/mysql/mysqld log‘ for error logging: Permission denied
- PHP curl post x-www-form-urlencoded
- 软件缺陷的管理
- Qin long, a technical expert of Alibaba cloud: a prerequisite for reliability assurance - how to carry out chaos engineering on the cloud
- The JSP specification requires that an attribute name is preceded by whitespace
- 对比学习的应用(LCGNN,VideoMoCo,GraphCL,XMC-GAN)
- Return and finally? Everyone, please look over here,
猜你喜欢

Review in the middle of 2022 | understand the latest progress of pre training model

Maskgae: masked graph modeling meets graph autoencoders

'C:\xampp\php\ext\php_ zip. Dll'-%1 is not a valid Win32 Application Solution

Eigenvalues and eigenvectors of matrices

【USB设备设计】--复合设备,双HID高速(64Byte 和 1024Byte)

【Debias】Model-Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in RS(KDD‘21)

JaveScript循环

Teach you how to configure S2E as the working mode of TCP server through MCU

Onenet platform control w5500 development board LED light

brpc源码解析(一)—— rpc服务添加以及服务器启动主要过程
随机推荐
session和cookie有什么区别??小白来告诉你
Similarity matrix, diagonalization condition
JS中的数组
Meta-learning(元学习与少样本学习)
What is the difference between session and cookie?? Xiaobai came to tell you
'C:\xampp\php\ext\php_zip.dll' - %1 不是有效的 Win32 应用程序 解决
php 一台服务器传图片到另一台上 curl post file_get_contents保存图片
Learning to Pre-train Graph Neural Networks(图预训练与微调差异)
Pycharm connects to the remote server SSH -u reports an error: no such file or directory
【6篇文章串讲ScalableGNN】围绕WWW 2022 best paper《PaSca》
Risks in software testing phase
什么是全局事件总线?
PL/SQL入门,非常详细的笔记
brpc源码解析(三)—— 请求其他服务器以及往socket写数据的机制
【高并发】高并发场景下一种比读写锁更快的锁,看完我彻底折服了!!(建议收藏)
"Mqtt protocol explanation and Practice (access to onenet)" of wiznet w5500 series training activities
[comparative learning] understanding the behavior of contractual loss (CVPR '21)
已解决 Files‘ name is invalid or does not exist (1205)
【GCN多模态RS】《Pre-training Representations of Multi-modal Multi-query E-commerce Search》 KDD 2022
知识图谱用于推荐系统问题(MVIN,KERL,CKAN,KRED,GAEAT)