当前位置:网站首页>Fedformer:Frequency Enhanced DecomposedTransformer for long-term series forecasting[还在学习中···]
Fedformer:Frequency Enhanced DecomposedTransformer for long-term series forecasting[还在学习中···]
2022-06-09 19:09:00 【思考实践】
初读//原论文18页,主要内容占8页,可读性好
1.Introduction
To further en-hance the performance of Transformer for long-term prediction, we exploit the fact that most time series tend to have a sparse representation in well-known basis such as Fourier transform, and develop a frequency enhanced Transformer. Be-sides being more effective, the proposed method,termed as Frequency Enhanced Decomposed.Transformer (FEDformer), is more efficient than standard Transformer with alinear complexity to the sequence length.//说了大多数时间序列在傅里叶变换下的频率特征表示都是稀疏的,咱们增强在这个傅里叶变换背景下的特征表示,然后咱不仅做好了特征的表达,对比原生Transformer,还提高了计算效率,时间复杂度是线性的。
To the best of our knowledge, our proposed method is the first work to achieve fast attention mechanism through low rank approximated transformation in frequency domain for time series forecasting.//就我们所知,我们所提出的方法是第一个通过时间序列预测的频域低阶近似变换来实现快速关注机制的工作。
It is clear that the pre-
dicted time series shared a different distribution from that #发现问题
of ground truth. The discrepancy between ground truth
and prediction could be explained by the point-wise atten-
tion and prediction in Transformer. Since prediction for
each timestep is made individually and independently, it #分析问题
is likely that the model fails to maintain the global prop-
erty and statistics of time series as a whole. To address
this problem, we exploit two ideas in this work. The first #解决问题
idea is to incorporate a seasonal-trend decomposition ap-
proach (Cleveland et al., 1990; Wen et al., 2019), which is
widely used in time series analysis, into the Transformer-
based method. Although this idea has been exploited be-
fore (Oreshkin et al., 2019; Wu et al., 2021), we present a
special design of network that is effective in bringing the
distribution of prediction close to that of ground truth, ac-
cording to Kologrov-Smirnov distribution test. Our second
idea is to combine Fourier analysis with the Transformer-
based method.Instead of applying Transformer to the time
domain, we apply it to the frequency domain which helps #总结新意:一个新的分解模块和
Transformer better capture global properties of time series. # 在频域使用,transformer
Combining both ideas, we propose a Frequency Enhanced # 来提取时间序列全局信息
Decomposition Transformer, or, FEDformer for short, for #
long-term time series forecasting.
2.Method
Compact Representation of Time Series in Frequency Domain#时间序列的频域紧凑表示
时序数据可以从时域和频域建模。与其他算法不同,本文基于神经网络频域运算。傅里叶分析是深入频域的常用工具,如何用傅里叶恰当地表示时间序列是关键。
保留所有的频率分量表示较差,时序的许多高频变化是噪声。仅保留低频也不适合,因为一些趋势变化代表重要事件。本文使用少量选定的傅里叶分量保持时间序列的紧凑表示带来transformer的高效计算。通过随机选择常数个数的傅立叶分量(包括高频和低频)来表示时间序列。下面从理论上分析了随机选择的合理性,并可以在实验中验证。

这段我是这么理解的,X1(t),...,Xm(t)好比m个变量,每个变量都是关于时间t的序列。
通过对每个变量的时间序列进行傅里叶变换,得到向量
,(这其中每一个分量都是一个频率分量),把所有的傅里叶变换向量都装进一个矩阵里面,得到矩阵
,这个矩阵每一行代表不同的变量的时间序列(基于前面打比方举例),每一列代表着不同的傅里叶变换分量(就是复数),尽管适用所有的傅里叶分量可以尽可能的保存时序里面的历史信息,但是这样会对历史数据过拟合,并且预测效果很差。因此,我们需要选取傅里叶分量的子集,一方面足够小,小到满足规避过拟合的程度,另一方面尽可能的保留历史信息.所以我们提议均匀随机的从d个傅里叶分量里面选取s个分量.特别的,我们用
来代表随机选取的分量,我们构建矩阵
,并且
,
预算我们的多变量时序的矩阵表达变为

Figure 1. Overall structure of FEDformer
1 模型架构:FEDformer由n个encoder和m个decoder组成,可以看出渐进式分解序列的整体架构是在autoformer上改进,将autoformer的序列级别注意替换成了频域注意力。
2 .1 注意力改进分(傅里叶版本):解模块增加了专家模型 频率增强块(FEB,绿色,相当于self-attention机制)和频率增强注意(FE红色,相当于cross attention)在频域进行表示学习。FEB或FEA都有两个版本(-f 傅立叶基& -w小波基)。混合专家分解块(MOEDecomp,黄色)从输入数据提取季节趋势,下面是第一个版本,用傅立叶变换实现的
Figure 2. Frequency Enhanced Block (FEB)
Figure 3. Frequency Enhanced Attention (FEA)
2.2 注意力改进(小波版):
Figure 5. Top Left: Wavelet frequency enhanced block decompo-
sition stage. Top Right: Wavelet block reconstruction stage shared
by FEB-w and FEA-w. Bottom: Wavelet frequency enhanced
cross attention decomposition stage.
官方代码
https://github.com/MAZiqing/FEDformer
@inproceedings{zhou2022fedformer,
title={
{FEDformer}: Frequency enhanced decomposed transformer for long-term series forecasting},
author={Zhou, Tian and Ma, Ziqing and Wen, Qingsong and Wang, Xue and Sun, Liang and Jin, Rong},
booktitle={Proc. 39th International Conference on Machine Learning (ICML 2022)},
location = {Baltimore, Maryland},
pages={},
year={2022}
}
应该是阿里达摩院的工作

知识补给站
*需要有的知识小波变换,这篇写的非常好,深入浅出
Reference
fedformer (Frequency Enhanced DecomposedTransformer )时间序列预测 - 知乎
#今日论文推荐#【ICML2022】FEDformer:用于长期序列预测的频率增强分解Transformer_wwwsxn的博客-CSDN博客
ICLR 2022丨时间序列(Time Series)论文汇总 - 知乎
pyraformer
边栏推荐
- Function: multi file upload and unified submission
- MySQL parallel replication (MTS) principle (full version)
- This article explains in detail three ways for PHP to connect to MySQL database
- Ziguang zhanrui mobile phone chips are exposed to have serious security vulnerabilities, and about 10% of Android phones in the world may be affected
- 一季度全球PC GPU出货量下滑6.2%,疫情创造大量需求至此结束
- Visual display of cool 3D charts
- The company is suspected of violating the ban to provide technical support to Huawei Hisilicon. Xinsi technology said it was cooperating with the U.S. government in the investigation
- 二叉树的按层遍历
- How about JPMorgan futures? Is it safe to open futures accounts?
- Minicube deployment use
猜你喜欢

用指纹做Windows双因素身份认证,既安全又方便
MySQL optimization tutorial: slow query log practice

第一次画板子小记

快速求完全二叉树的节点个数
![[database data recovery] data recovery case of SQLSERVER database file missing for unknown reasons under Windows Server Environment](/img/aa/9942e0c661032dbb9654100dc4d709.png)
[database data recovery] data recovery case of SQLSERVER database file missing for unknown reasons under Windows Server Environment

leetcode:剑指 Offer 56 - I. 数组中数字出现的次数【分组异或】

微电网数字孪生 | 智能时代,部署源网荷储一体化管控平台

美农生物上市在即:近三年经营较为稳健,预计超募约1亿元

Notes on the first drawing board
![Leetcode: Sword finger offer 56 - I. number of occurrences in the array [grouping XOR]](/img/87/ffcadcc4542b06e7f0da375178bbcc.png)
Leetcode: Sword finger offer 56 - I. number of occurrences in the array [grouping XOR]
随机推荐
Singular Value Decomposition(SVD)
Comment on "8 reasons why developers don't like low code and no code"
国联期货开户安全吗?国联期货公司开户方法是什么?
SQL第四练:字符串处理函数
TPAMI2022 | 基于对抗性神经表示学习的异构域适应:电子商务与网络安全实验
请问为什么不能够在DF的foreachPartition方法调用的函数方法中引用redis模块呢?
押宝云原生,Ampere Computing打响服务器芯片变革关键一枪
最长有效括号的问题
被疑违反禁令为华为海思提供技术支持,新思科技称正配合美国政府调查
How does GNN generalize? This 135 page PDF doctoral thesis "generalization evaluation and improvement of neurograph reasoning and learning"
三星彻底关闭LCD产线,300名员工转移至芯片封装部门
技术分享 | 被测系统架构与数据流分析
CL210OpenStack操作的故障排除--诊断OpenStack问题
What are the products with high expected income of personal endowment insurance?
Audio 3A processing practice makes your application more "pleasant"
DBeaver中如何调整SQL编辑器的字体大小
英特尔、三星、高通等将组团收购Arm?
Ziguang zhanrui mobile phone chips are exposed to have serious security vulnerabilities, and about 10% of Android phones in the world may be affected
深度学习与CV教程(13) | 目标检测 (SSD,YOLO系列)
What physical stores will be more profitable in 2022? A small cost shop suitable for women, yeqifang is healthy