当前位置:网站首页>【Redis】缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存击穿、缓存降级
【Redis】缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存击穿、缓存降级
2022-08-01 19:12:00 【StudyWinter】
1 缓存雪崩
缓存雪崩指的是缓存同一时间大面积的失效,所以,后面的请求都会落到数据库上,造成数据库短时间内承受大量请求而崩掉。
简单的理解为:由于原有缓存失效,新缓存未到期间(例如:我们设置缓存时采用了相同的过期时间,在同一时刻出现大面积的缓存过期),所有原本应该访问缓存的请求都去查询数据库了,而对数据库CPU和内存造成巨大压力,严重的会造成数据库宕机,从而形成一系列连锁反应,造成整个系统崩溃。
解决办法
事前:尽量保证整个 Redis 集群的高可用性,发现机器宕机尽快补上,选择合适的内存淘汰策略。
事中:本地ehcache缓存 + hystrix限流&降级,避免MySQL崩掉, 通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。
事后:利用 Redis 持久化机制保存的数据尽快恢复缓存
2 缓存穿透
一般是黑客故意去请求缓存中不存在的数据,导致所有的请求都落到数据库上,造成数据库短时间内承受大量请求而崩掉。
简单的理解为:缓存穿透是指查询一个一定不存在的数据,由于缓存不命中,接着查询数据库也无法查询出结果,因此也不会写入到缓存中,这将会导致每个查询都会去请求数据库,造成缓存穿透。
解决办法
1、布隆过滤器
这是最常见的一种解决方法了,它是将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被 这个bitmap拦截掉,从而避免了对底层存储系统的查询压 力。
对所有可能查询的参数以hash形式存储,在控制层先进行校验,不符合则丢弃,从而避免了对底层存储系统的查询压力;
布隆过滤器是引入了k(k>1)k(k>1)个相互独立的哈希函数,保证在给定的空间、误判率下,完成元素判重的过程。 它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。
该算法的核心思想就是利用多个不同的Hash函数来解决“冲突”。Hash存在一个冲突(碰撞)的问题,用同一个Hash得到的两个URL的值有可能相同。为了减少冲突,我们可以多引入几个Hash,如果通过其中的一个Hash值我们得出某元素不在集合中,那么该元素肯定不在集合中。只有在所有的Hash函数告诉我们该元素在集合中时,才能确定该元素存在于集合中。这便是布隆过滤器的基本思想,一般用于在大数据量的集合中判定某元素是否存在。
2、缓存空对象
当存储层不命中后,即使返回的空对象也将其缓存起来,同时会设置一个过期时间,之后再访问这个数据将会从缓存中获取,保护了后端数据源;如果一个查询返回的数据为空(不管是数据不存 在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。
但是这种方法会存在两个问题:
1、如果空值能够被缓存起来,这就意味着缓存需要更多的空间存储更多的键,因为这当中可能会有很多的空值的键;
2、即使对空值设置了过期时间,还是会存在缓存层和存储层的数据会有一段时间窗口的不一致,这对于需要保持一致性的业务会有影响。
适用场景:缓存空对象适用于1、数据命中不高 2、数据频繁变化且实时性较高 ;而布隆过滤器适用1、数据命中不高 2、数据相对固定即实时性较低
维护成本:缓存空对象的方法适合1、代码维护简单 2、需要较多的缓存空间 3、数据会出现不一致的现象;布隆过滤器适合 1、代码维护较复杂 2、缓存空间要少一些。
3 缓存预热
缓存预热是指系统上线后,将相关的缓存数据直接加载到缓存系统。这样就可以避免在用户请求的时候,先查询数据库,然后再将数据缓存的问题。用户会直接查询事先被预热的缓存数据。
解决思路
1、直接写个缓存刷新页面,上线时手工操作下;
2、数据量不大,可以在项目启动的时候自动进行加载;
3、定时刷新缓存;
4 缓存更新
除了缓存服务器自带的缓存失效策略之外(Redis默认的有6中策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种:
(1)定时去清理过期的缓存;定时删除和惰性删除
定时删除:Redis默认是每隔 100ms 就随机抽取一些设置了过期时间的key,检查其是否过期,如果过期就删 除。注意这里是随机抽取的。为什么要随机呢?你想一想假如 Redis 存了几十万个 key ,每隔100ms就遍历所 有的设置过期时间的 key 的话,就会给 CPU 带来很大的负载!
惰性删除 :定期删除可能会导致很多过期 key 到了时间并没有被删除掉。所以就有了惰性删除。它是指某个键值过期后,此键值不会马上被删除,而是等到下次被使用的时候,才会被检查到过期,此时才能得到删除,惰性删除的缺点很明显是浪费内存。 除非你的系统去查一下那个 key,才会被Redis给删除掉。这就是所谓的惰性删除!
(2)当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,大家可以根据自己的应用场景来权衡。
5 缓存击穿
缓存击穿,是指一个key热点,在不停的扛着大并发,大并发集中对这一个点进行访问,当这个key在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,就像在一个屏障上凿开了一个洞。
比如常见的电商项目中,某些货物成为“爆款”了,可以对一些主打商品的缓存直接设置为永不过期。即便某些商品自己发酵成了爆款,也是直接设为永不过期就好了。mutex key互斥锁基本上是用不上的,有个词叫做大道至简。
6 缓存降级
当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。
降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。 以参考日志级别设置预案:
(1)一般:比如有些服务偶尔因为网络抖动或者服务正在上线而超时,可以自动降级;
(2)警告:有些服务在一段时间内成功率有波动(如在95~100%之间),可以自动降级或人工降级,并发送告警;
(3)错误:比如可用率低于90%,或者数据库连接池被打爆了,或者访问量突然猛增到系统能承受的最大阀值,此时可以根据情况自动降级或者人工降级;
(4)严重错误:比如因为特殊原因数据错误了,此时需要紧急人工降级。
服务降级的目的,是为了防止Redis服务故障,导致数据库跟着一起发生雪崩问题。因此,对于不重要的缓存数据,可以采取服务降级策略,例如一个比较常见的做法就是,Redis出现问题,不去数据库查询,而是直接返回默认值给用户。
边栏推荐
猜你喜欢
随机推荐
Combining two ordered arrays
【周赛复盘】LeetCode第304场单周赛
DAO development tutorial [WEB3.0]
Redis启动时提示Creating Server TCP listening socket *:6379: bind: No error
explain each field introduction
Heavy cover special | build the first line of defense, cloud firewall offensive and defensive drills best practices
MySQL数据库————流程控制
No need to crack, install Visual Studio 2013 Community Edition on the official website
请你说说多线程
明尼苏达大学团队结合高通量实验与机器学习,实现有效可预测的特定位点重组过程,可调节基因编辑速度
Prometheus的Recording rules实践
The life cycle and scope
GBase 8c中怎么查询数据库配置参数,例如datestyle。使用什么函数或者语法呢?
金鱼哥RHCA回忆录:CL210管理OPENSTACK网络--网络配置选项
Risc-v Process Attack
The solution to the vtk volume rendering code error (the code can run in vtk7, 8, 9), and the VTK dataset website
Win11校园网无法连接怎么办?Win11连接不到校园网的解决方法
【木棉花】#夏日挑战赛# 鸿蒙小游戏项目——数独Sudoku(3)
1065 A+B and C (64bit)
通配符 SSL/TLS 证书