当前位置:网站首页>"R Language + Remote Sensing" Comprehensive Evaluation Method of Water Environment
"R Language + Remote Sensing" Comprehensive Evaluation Method of Water Environment
2022-07-30 07:12:00 【WangYan2022】
【目标】:
1、掌握RBasic application of language and analysis methods of water environment data
2、Master the preprocessing method of water environment remote sensing data
3、Master waterline extraction——Mixed method of water body index and threshold value(遥感)
4、Master water depth extraction——Multiple regression analysis method(R语言+遥感)
5、Master the water temperature for extraction——支持向量机方法(R语言+遥感)
6、Master water extraction——Neural network analysis methods(R语言+遥感)
7、Master the visualization mapping method of water environment remote sensing information extraction results(R语言)
【专家】:张博士,Front-line researchers from key universities and research institutes,长期从事机器学习、Remote sensing technology and application research,主持多项国家级科研项目,编写著作3部,The first author publishes a scientific paper20余篇.Multi-platform for remote sensing technology at home and abroad、Status of multi-sensor applications,As well as a deep understanding of the core technologies involved,精通ENVI、R语言、Mathlab和Unscrambler等分析工具,Has rich scientific research and water chlorophyll、悬浮物、Sediment and yellow substance extraction experience.
>>> “R 语 言 + 遥 感” 的 水 环 境 综 合 评 价 方 法 实 践 技 术 应 用
专题一 R语言概述
1.1 R语言特点(R语言)
1.2 安装R(R语言)
1.3 安装RStudio(R语言)
(1)下载地址
(2)安装步骤
(3)软件配置
1.4 第一个程序Hello world(R语言)
(1)Hello world
(2)R语言基础
(3)RLinguistic Numerical Computing
(4)R语言常用函数
(5)RLanguage data entry method
1.5 case formRBasic learning of language grammar(R语言)
(1)Read water environment data sources
(2)设置路径
(3)使用read.csv读取数据
(4)Transform based on data type
(5)Basic analysis of water environment data
(6)Advanced analysis of water environment data
(7)Verify correct data characteristics based on decision tree prediction
(8)Validation of prediction results based on confusion matrix
专题二 Remote sensing data preprocessing
2.1 Remote Sensing Water Environment Pollution Evaluation Theory(遥感)
(1)Principles of remote sensing of water environment
(2)Water environment remote sensing modeling method
2.2 Remote sensing data acquisition methods(遥感)
2.3 Radiometric Correction Methods for Remote Sensing Data(遥感)
(1)Load and display data
(2)辐射定标
(3)大气校正
2.4 High-definition fusion method of remote sensing data(遥感)
(1)融合的原理
(2)Gram-SchmidtFusion implementation
专题三 Waterline extraction——Mixed method of water body index and threshold value(遥感)
3.1 水体指数计算
(1)加载数据
(2)Calculate the water body index
3.2 The threshold method determines the waterline
(1)Creation of a region of interest
(2)The background pixels are set to0
(3)阈值的实现
(4)Waterline extraction
3.3 Crop lake data
专题四 Deep water extraction——Multiple regression analysis method(R语言+遥感)
4.1 Apply model theory for solar radiation bands
4.2 How to obtain water depth data
4.3 加载影像
4.4 Measured water data
4.5 假设条件
4.6 数据整理
4.7 将数据导入R语言
4.8 采用RLanguage correlation test
(1)The principle of correlation test
(2)R语言语法
(3)进行相关性分析
(4)绘制相关性图
(5)建立多元线性回归模型
(6)Multiple linear regression model of water depth
4.9 digital mapping
4.10 精度验证
(1)Open the resulting image
(2)Open the Accuracy Evaluation Template
(3)Check the measured water depth
(4)Analyze extraction accuracy
专题五 Water temperature extraction——支持向量机方法(R语言+遥感)
5.1 Principles of water surface temperature inversion
5.2 Landsat8Satellite thermal infrared band
5.3 Heat radiation conduction equation
5.4 The extraction method of surface heat information is realized
(1)打开数据
(2)Image radiometric calibration
(3)地表比辐射率计算
(4)Calculation of black body radiance and surface temperature
(5)Calculated surface temperature
(6)图像裁剪
(7)Color mapping
(8)Production of temperature profiles
(9)Collect temperature values for precise geographic locations
5.5 water temperature forecastR语言实现
(1)技术背景
(2)导入数据
(3)Data preview and inspection
(4)Data classification is done using support vector machines
(5)The water temperature prediction is realized based on the support vector machine training model
5.6 RThe language draws a graph comparing predicted and measured values
(1)绘制基本散点图
(2)Group data based on color and dot shape
(3)Map continuous variables
(4)Handling scatter overlap
(5)添加回归模型拟合线
(6)向散点图添加边际地毯
(7)向散点图添加标签
专题六 Water extraction——神经网络分析(R语言+遥感)
6.1 Principles of water composition inversion
6.2 加载影像
6.3 A component content index model was established
6.4 生成12A spectral dataset of parameters
(1)LayerStacking生成数据集
(2)Extract the spectral parameters of the sampling point
6.5 A dataset of measured water surface data and spectral parameters
6.6 RLinguistic prediction of water quality component content
(1)技术背景
(2)导入数据
(3)安装nnet包
(4)Predict chlorophyll、氮、磷、钾含量
(5)Draw chlorophyll、氮、磷、Potassium neural network diagram
专题七 Visual mapping of extraction results of remote sensing information of water environment(R语言)
7.1 叶绿素、泥沙、Suspended solids diagram
(1)Monochrome display
(2)Gradient filled display
(3)Gradient colors and different shapes fill the display diagram
7.2 Graph of the correlation coefficient between water depth and water temperature
(1)相关热力图
(2)Change graph
7.3 Visualization of water temperature data
(1)散点分布图
(2)Histogram
7.4 Visualization of water quality data
(1)Time series peaks and peaks
(2)量化波形图
(3)日历图
Discuss Q&A
根据科研或生产实际,提供数据,Brainstorm the overall implementation plan of remote sensing technology 提供若干附加材料,包括典型论文、其它软件以及学习材料
实例回顾、训练、巩固
答疑与讨论
更多学习
●HSPF(Hydrological Simulation Program Fortran)模型学习
●SWATModels in Hydrology and Water Resources、Practical technology application and typical case analysis in non-point source pollution simulation
●HYPEDistributed hydrological model modeling method and case analysis
●基于Python实现的深度学习技术在水文水质领域应用
●Delft3D水动力-Practical application of eutrophication model
●基于Delft3DScalar transport for the model、波浪、Lagrangian particle and oil spill model application
●Delft3D建模、Hydrodynamic simulation methods and their application in the assessment of the environmental impact of surface water
●AQUATOXPractical technical application of water environment and water ecological model
●地理信息系统(ArcGIS)在水文水资源、Applications and case studies in the water environment
●基于FVCOM3D hydrodynamics of the model、water exchange、Numerical simulation of oil spill material dispersion and transport
●FVCOM流域、Numerical simulation method and application of marine water environment
边栏推荐
- Function functional interface and application
- 用户密码加密编码使用 Bcrypt 代替 MD5,SHA1和SHA256
- 基于OpenCV的相机标定流程
- 边境的悍匪—机器学习实战:第十章 Keras人工神经网络简介
- 常用损失函数(二):Dice Loss
- Common exception analysis of Redis client
- QT串口动态实时显示大量数据波形曲线(四)========“界面的美化与处理”
- 目标检测中的知识蒸馏方法
- 昆仑通态屏幕制作(连载3)---基础篇(按钮串口发送)
- 基于全球模式比较计划CMIP6与区域气候-化学耦合模式 WRF-Chem 的未来大气污染变化模拟
猜你喜欢
R language application in the field of ecological environment
十、Kotlin基础学习:1、延迟加载;2、异常处理;3、使用 throw 主动抛出异常;4、自定义异常;
Conda 安装 tensorflow gpu 1.13.1(验证可行)
Rsync realizes folder or data synchronization between Win systems
八、Kotlin基础学习:1、数据类;2、单例;3、伴生对象;4、密封类;
Generalized Focal Loss 论文阅读笔记
Pytorch(三):可视化工具(Tensorboard、Visdom)
“R语言+遥感”的水环境综合评价方法
边境的悍匪—机器学习实战:第一章 机器学习的基础知识
Self-augmented Unpaired Image Dehazing via Density and Depth Decomposition程序运行记录
随机推荐
Student achievement management system (C language version)
GraphQL(一)基础介绍及应用示例
生产力工具分享——简洁而不简单
边境的悍匪—机器学习实战:第三章 分类
写在公众号之前——QT,ARM,DSP,单片机,电力电子与传动!
边境的悍匪—机器学习实战:第四章 训练模型
Mycat2.0 build tutorial
【青岛站】SWAT模型高阶应用暨无资料地区建模、不确定分析与气候变化、土地利用对面源污染影响模型改进及案例分析研讨
Detailed explanation of regular expression syntax and practical examples
OpenCV中(rows,cols)与图像(x,y)
GraphQL (1) Basic introduction and application examples
十七、Kotlin进阶学习:1、守护线程;2、线程和协程之间的效率对比;3、取消协程;
函数的信息传递(C语言实践)
HSPF 模型应用
昆仑通态屏幕制作(连载3)---基础篇(按钮串口发送)
CLUE模型构建方法、模型验证及土地利用变化情景预测
Pytorch(一):动态图机制以及框架结构
抽象工厂模式(Swift 实现)
九、Kotlin基础学习:1、Companion的扩展方法和扩展属性;2、一般类的扩展方法和扩展属性;3、委托;
昆仑通态屏幕制作(连载4)---基础篇(图形设定与显示,按钮灯)