当前位置:网站首页>"R Language + Remote Sensing" Comprehensive Evaluation Method of Water Environment
"R Language + Remote Sensing" Comprehensive Evaluation Method of Water Environment
2022-07-30 07:12:00 【WangYan2022】
【目标】:
1、掌握RBasic application of language and analysis methods of water environment data
2、Master the preprocessing method of water environment remote sensing data
3、Master waterline extraction——Mixed method of water body index and threshold value(遥感)
4、Master water depth extraction——Multiple regression analysis method(R语言+遥感)
5、Master the water temperature for extraction——支持向量机方法(R语言+遥感)
6、Master water extraction——Neural network analysis methods(R语言+遥感)
7、Master the visualization mapping method of water environment remote sensing information extraction results(R语言)
【专家】:张博士,Front-line researchers from key universities and research institutes,长期从事机器学习、Remote sensing technology and application research,主持多项国家级科研项目,编写著作3部,The first author publishes a scientific paper20余篇.Multi-platform for remote sensing technology at home and abroad、Status of multi-sensor applications,As well as a deep understanding of the core technologies involved,精通ENVI、R语言、Mathlab和Unscrambler等分析工具,Has rich scientific research and water chlorophyll、悬浮物、Sediment and yellow substance extraction experience.
>>> “R 语 言 + 遥 感” 的 水 环 境 综 合 评 价 方 法 实 践 技 术 应 用
专题一 R语言概述
1.1 R语言特点(R语言)
1.2 安装R(R语言)
1.3 安装RStudio(R语言)
(1)下载地址
(2)安装步骤
(3)软件配置
1.4 第一个程序Hello world(R语言)
(1)Hello world
(2)R语言基础
(3)RLinguistic Numerical Computing
(4)R语言常用函数
(5)RLanguage data entry method
1.5 case formRBasic learning of language grammar(R语言)
(1)Read water environment data sources
(2)设置路径
(3)使用read.csv读取数据
(4)Transform based on data type
(5)Basic analysis of water environment data
(6)Advanced analysis of water environment data
(7)Verify correct data characteristics based on decision tree prediction
(8)Validation of prediction results based on confusion matrix
专题二 Remote sensing data preprocessing
2.1 Remote Sensing Water Environment Pollution Evaluation Theory(遥感)
(1)Principles of remote sensing of water environment
(2)Water environment remote sensing modeling method
2.2 Remote sensing data acquisition methods(遥感)
2.3 Radiometric Correction Methods for Remote Sensing Data(遥感)
(1)Load and display data
(2)辐射定标
(3)大气校正
2.4 High-definition fusion method of remote sensing data(遥感)
(1)融合的原理
(2)Gram-SchmidtFusion implementation
专题三 Waterline extraction——Mixed method of water body index and threshold value(遥感)
3.1 水体指数计算
(1)加载数据
(2)Calculate the water body index
3.2 The threshold method determines the waterline
(1)Creation of a region of interest
(2)The background pixels are set to0
(3)阈值的实现
(4)Waterline extraction
3.3 Crop lake data
专题四 Deep water extraction——Multiple regression analysis method(R语言+遥感)
4.1 Apply model theory for solar radiation bands
4.2 How to obtain water depth data
4.3 加载影像
4.4 Measured water data
4.5 假设条件
4.6 数据整理
4.7 将数据导入R语言
4.8 采用RLanguage correlation test
(1)The principle of correlation test
(2)R语言语法
(3)进行相关性分析
(4)绘制相关性图
(5)建立多元线性回归模型
(6)Multiple linear regression model of water depth
4.9 digital mapping
4.10 精度验证
(1)Open the resulting image
(2)Open the Accuracy Evaluation Template
(3)Check the measured water depth
(4)Analyze extraction accuracy
专题五 Water temperature extraction——支持向量机方法(R语言+遥感)
5.1 Principles of water surface temperature inversion
5.2 Landsat8Satellite thermal infrared band
5.3 Heat radiation conduction equation
5.4 The extraction method of surface heat information is realized
(1)打开数据
(2)Image radiometric calibration
(3)地表比辐射率计算
(4)Calculation of black body radiance and surface temperature
(5)Calculated surface temperature
(6)图像裁剪
(7)Color mapping
(8)Production of temperature profiles
(9)Collect temperature values for precise geographic locations
5.5 water temperature forecastR语言实现
(1)技术背景
(2)导入数据
(3)Data preview and inspection
(4)Data classification is done using support vector machines
(5)The water temperature prediction is realized based on the support vector machine training model
5.6 RThe language draws a graph comparing predicted and measured values
(1)绘制基本散点图
(2)Group data based on color and dot shape
(3)Map continuous variables
(4)Handling scatter overlap
(5)添加回归模型拟合线
(6)向散点图添加边际地毯
(7)向散点图添加标签
专题六 Water extraction——神经网络分析(R语言+遥感)
6.1 Principles of water composition inversion
6.2 加载影像
6.3 A component content index model was established
6.4 生成12A spectral dataset of parameters
(1)LayerStacking生成数据集
(2)Extract the spectral parameters of the sampling point
6.5 A dataset of measured water surface data and spectral parameters
6.6 RLinguistic prediction of water quality component content
(1)技术背景
(2)导入数据
(3)安装nnet包
(4)Predict chlorophyll、氮、磷、钾含量
(5)Draw chlorophyll、氮、磷、Potassium neural network diagram
专题七 Visual mapping of extraction results of remote sensing information of water environment(R语言)
7.1 叶绿素、泥沙、Suspended solids diagram
(1)Monochrome display
(2)Gradient filled display
(3)Gradient colors and different shapes fill the display diagram
7.2 Graph of the correlation coefficient between water depth and water temperature
(1)相关热力图
(2)Change graph
7.3 Visualization of water temperature data
(1)散点分布图
(2)Histogram
7.4 Visualization of water quality data
(1)Time series peaks and peaks
(2)量化波形图
(3)日历图

Discuss Q&A
根据科研或生产实际,提供数据,Brainstorm the overall implementation plan of remote sensing technology 提供若干附加材料,包括典型论文、其它软件以及学习材料
实例回顾、训练、巩固
答疑与讨论
更多学习
●HSPF(Hydrological Simulation Program Fortran)模型学习
●SWATModels in Hydrology and Water Resources、Practical technology application and typical case analysis in non-point source pollution simulation
●HYPEDistributed hydrological model modeling method and case analysis
●基于Python实现的深度学习技术在水文水质领域应用
●Delft3D水动力-Practical application of eutrophication model
●基于Delft3DScalar transport for the model、波浪、Lagrangian particle and oil spill model application
●Delft3D建模、Hydrodynamic simulation methods and their application in the assessment of the environmental impact of surface water
●AQUATOXPractical technical application of water environment and water ecological model
●地理信息系统(ArcGIS)在水文水资源、Applications and case studies in the water environment
●基于FVCOM3D hydrodynamics of the model、water exchange、Numerical simulation of oil spill material dispersion and transport
●FVCOM流域、Numerical simulation method and application of marine water environment
边栏推荐
- 无人机生态环境监测、图像处理与GIS数据分析
- 联影医疗一面
- nodejs PM2监控及报警邮件发送(二)
- 对于国内数据交换平台的分析
- The application of Meta analysis in the field of ecological environment
- 十、Kotlin基础学习:1、延迟加载;2、异常处理;3、使用 throw 主动抛出异常;4、自定义异常;
- 标准化(Normalization)知识点总结
- 边境的悍匪—机器学习实战:第七章 集成学习和随机森林
- 树莓派OpenCV+OpenCV-contrib
- Arthas command parsing (jvm/thread/stack/heapdump)
猜你喜欢

边境的悍匪—Kaggle—泰坦尼克号生还预测详细教程

Pytorch(三):可视化工具(Tensorboard、Visdom)

十一、Kotlin进阶学习:1、集合;2、List操作;3、可变集合——MutableList;4、Set;5、Map;6、MutableMap;

十、Kotlin基础学习:1、延迟加载;2、异常处理;3、使用 throw 主动抛出异常;4、自定义异常;

昆仑通态屏幕制作(连载2)---基础篇(设定与显示,串口发送)

Atmospheric particulate matter PMF source analysis

Pytorch(二):数据读取机制(DataLoader、DataSet)与图像预处理模块(transforms)

原型模式(Prototype):Swift 实现

无人机生态环境监测、图像处理与GIS数据分析

Target detection, object classification and semantic segmentation of UAV remote sensing images based on PyTorch deep learning
随机推荐
二十二、Kotlin进阶学习:简单学习RecyclerView实现列表展示;
边境的悍匪—机器学习实战:第七章 集成学习和随机森林
C语言实战小项目(传统卡牌游戏)
FPGA解析B码----连载1
Application of remote sensing, GIS and GPS technology in hydrology, meteorology, disaster, ecology, environment and health
MySQL 特殊语句及优化器
Self-augmented Unpaired Image Dehazing via Density and Depth Decomposition program running record
边境的悍匪—机器学习实战:第十章 Keras人工神经网络简介
Simulation of Future Air Pollution Changes Based on Global Model Comparison Program CMIP6 and Regional Climate-Chemistry Coupling Model WRF-Chem
基于遥感解译与GIS技术环境影响评价图件制作(最新导则)
基于OpenCV的双目重建
Kaggle-M5
R-GIS: 如何用R语言实现GIS地理空间分析及模型预测
2021-09-16 集成学习上--task1机器学习数学基础
Basic application of XMLBean
新导则下 防洪评价报告编制方法及洪水建模(HEC-RAS)
Biome-BGC 生态系统模型与应用
QT连载2:基于QT和STM32H750的LORA试验平台(1)
基于MATLAB 2021b的机器学习、深度学习
Analysis of domestic data exchange platforms