当前位置:网站首页>Anaconda installation +tensorflow installation +keras installation +numpy installation (including image and version information compatibility issues)
Anaconda installation +tensorflow installation +keras installation +numpy installation (including image and version information compatibility issues)
2022-06-25 04:27:00 【Life is sweet and good luck is good】
install Anaconda
Anaconda Various versions of the installation package ( Official website )( According to the corresponding Python Version found required Anaconda Download the version installation package )
install Anaconda Check all the boxes , Direct fool mounting .( Pay attention to the installation address , The address should not contain Chinese )
Images to add :
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2tensorflow and numpy Corresponding version
| tensorflow | numpy | cuda | cudnn |
|---|---|---|---|
| 2.0.0 | 1.16.4 | ||
| 1.14.0 | 1.16.0 | 10.0 | 7.6.5 |
| 1.13.1 | 1.16.0 | ||
| 1.12.0 | 1.15.4 | ||
| 1.8.0 | 1.14.5 |
change numpy Version method :
pip install -U -i https://pypi.tuna.tsinghua.edu.cn/simple numpy== edition
# -U It's a reload
# -i https://pypi.tuna.tsinghua.edu.cn/simple Is to use Tsinghua mirror
Or use another image ( This image is faster )
http://pypi.douban.com/simple --trusted-host pypi.douban.com1. open Anaconda Prompt, Check Anaconda Is the installation successful :conda --version
2. Check which environments are currently installed :conda info --envs
4. Install different versions of python:conda create -n tensorflow python=3.6.5
Video installation tutorial used :Anaconda、Tensorflow、keras Possible installation problems and solutions / Experience sharing
The commands used in the tutorial :Anaconda Prompt
1.(base) Environmental Science
python -m pip install -U pip
// The correct result is :Successfully...
2.(base) Environmental Science
// Create a tensorflow Environment , At the same time to install python
conda create --name tensorflow python=3.6
3.(base)
activate tensorflow
4.(tensorflow)
pip install tensorflow==1.15.0 -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
5.(tensorflow)
// Check tensorflow Is the installation successful
python
import tensorflow as tf
// When the installation time appears, the installation is successful
6.(tensorflow)
pip install keras==2.2.5 -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
7.(tensorflow)
// Check keras Is the installation successful
python
import keras
// If the installation is successful, it will display Using TensofFlow backend
my Anaconda edition :Anaconda3-5.2.0
Python edition :3.6.1.2
keras edition :2.3.1
numpy edition :1.16.0
tensorflow edition :1.15.0
How to view the installed tensorflow Version of :

TensorFlow And Keras as well as Python Version one-to-one correspondence table
| Framework | Env name (--env parameter) | Description |
|---|---|---|
| TensorFlow 2.2 | tensorflow-2.2 | TensorFlow 2.2.0 + Keras 2.3.1 on Python 3.7. |
| TensorFlow 2.1 | tensorflow-2.1 | TensorFlow 2.1.0 + Keras 2.3.1 on Python 3.6. |
| TensorFlow 2.0 | tensorflow-2.0 | TensorFlow 2.0.0 + Keras 2.3.1 on Python 3.6. |
| TensorFlow 1.15 | tensorflow-1.15 | TensorFlow 1.15.0 + Keras 2.3.1 on Python 3.6. |
| TensorFlow 1.14 | tensorflow-1.14 | TensorFlow 1.14.0 + Keras 2.2.5 on Python 3.6. |
| TensorFlow 1.13 | tensorflow-1.13 | TensorFlow 1.13.0 + Keras 2.2.4 on Python 3.6. |
| TensorFlow 1.12 | tensorflow-1.12 | TensorFlow 1.12.0 + Keras 2.2.4 on Python 3.6. |
| tensorflow-1.12:py2 | TensorFlow 1.12.0 + Keras 2.2.4 on Python 2. | |
| TensorFlow 1.11 | tensorflow-1.11 | TensorFlow 1.11.0 + Keras 2.2.4 on Python 3.6. |
| tensorflow-1.11:py2 | TensorFlow 1.11.0 + Keras 2.2.4 on Python 2. | |
| TensorFlow 1.10 | tensorflow-1.10 | TensorFlow 1.10.0 + Keras 2.2.0 on Python 3.6. |
| tensorflow-1.10:py2 | TensorFlow 1.10.0 + Keras 2.2.0 on Python 2. | |
| TensorFlow 1.9 | tensorflow-1.9 | TensorFlow 1.9.0 + Keras 2.2.0 on Python 3.6. |
| tensorflow-1.9:py2 | TensorFlow 1.9.0 + Keras 2.2.0 on Python 2. | |
| TensorFlow 1.8 | tensorflow-1.8 | TensorFlow 1.8.0 + Keras 2.1.6 on Python 3.6. |
| tensorflow-1.8:py2 | TensorFlow 1.8.0 + Keras 2.1.6 on Python 2. | |
| TensorFlow 1.7 | tensorflow-1.7 | TensorFlow 1.7.0 + Keras 2.1.6 on Python 3.6. |
| tensorflow-1.7:py2 | TensorFlow 1.7.0 + Keras 2.1.6 on Python 2. | |
| TensorFlow 1.5 | tensorflow-1.5 | TensorFlow 1.5.0 + Keras 2.1.6 on Python 3.6. |
| tensorflow-1.5:py2 | TensorFlow 1.5.0 + Keras 2.1.6 on Python 2. | |
| TensorFlow 1.4 | tensorflow-1.4 | TensorFlow 1.4.0 + Keras 2.0.8 on Python 3.6. |
| tensorflow-1.4:py2 | TensorFlow 1.4.0 + Keras 2.0.8 on Python 2. | |
| TensorFlow 1.3 | tensorflow-1.3 | TensorFlow 1.3.0 + Keras 2.0.6 on Python 3.6. |
| tensorflow-1.3:py2 | TensorFlow 1.3.0 + Keras 2.0.6 on Python 2. | |
| TensorFlow 1.2 | tensorflow-1.2 | TensorFlow 1.2.0 + Keras 2.0.6 on Python 3.5. |
| tensorflow-1.2:py2 | TensorFlow 1.2.0 + Keras 2.0.6 on Python 2. | |
| TensorFlow 1.1 | tensorflow | TensorFlow 1.1.0 + Keras 2.0.6 on Python 3.5. |
| tensorflow:py2 | TensorFlow 1.1.0 + Keras 2.0.6 on Python 2. | |
| TensorFlow 1.0 | tensorflow-1.0 | TensorFlow 1.0.0 + Keras 2.0.6 on Python 3.5. |
| tensorflow-1.0:py2 | TensorFlow 1.0.0 + Keras 2.0.6 on Python 2. | |
| TensorFlow 0.12 | tensorflow-0.12 | TensorFlow 0.12.1 + Keras 1.2.2 on Python 3.5. |
| tensorflow-0.12:py2 | TensorFlow 0.12.1 + Keras 1.2.2 on Python 2. | |
| PyTorch 1.5 | pytorch-1.5 | PyTorch 1.5.0 + fastai 1.0.61 on Python 3.7. |
| PyTorch 1.4 | pytorch-1.4 | PyTorch 1.4.0 + fastai 1.0.60 on Python 3.6. |
| PyTorch 1.3 | pytorch-1.3 | PyTorch 1.3.0 + fastai 1.0.60 on Python 3.6. |
| PyTorch 1.2 | pytorch-1.2 | PyTorch 1.2.0 + fastai 1.0.60 on Python 3.6. |
| PyTorch 1.1 | pytorch-1.1 | PyTorch 1.1.0 + fastai 1.0.57 on Python 3.6. |
| PyTorch 1.0 | pytorch-1.0 | PyTorch 1.0.0 + fastai 1.0.51 on Python 3.6. |
| pytorch-1.0:py2 | PyTorch 1.0.0 on Python 2. | |
| PyTorch 0.4 | pytorch-0.4 | PyTorch 0.4.1 on Python 3.6. |
| pytorch-0.4:py2 | PyTorch 0.4.1 on Python 2. | |
| PyTorch 0.3 | pytorch-0.3 | PyTorch 0.3.1 on Python 3.6. |
| pytorch-0.3:py2 | PyTorch 0.3.1 on Python 2. | |
| PyTorch 0.2 | pytorch-0.2 | PyTorch 0.2.0 on Python 3.5 |
| pytorch-0.2:py2 | PyTorch 0.2.0 on Python 2. | |
| PyTorch 0.1 | pytorch-0.1 | PyTorch 0.1.12 on Python 3. |
| pytorch-0.1:py2 | PyTorch 0.1.12 on Python 2. | |
| Theano 0.9 | theano-0.9 | Theano rel-0.8.2 + Keras 2.0.3 on Python3.5. |
| theano-0.9:py2 | Theano rel-0.8.2 + Keras 2.0.3 on Python2. | |
| Caffe | caffe | Caffe rc4 on Python3.5. |
| caffe:py2 | Caffe rc4 on Python2. | |
| Torch | torch | Torch 7 with Python 3 env. |
| torch:py2 | Torch 7 with Python 2 env. | |
| Chainer 1.23 | chainer-1.23 | Chainer 1.23.0 on Python 3. |
| chainer-1.23:py2 | Chainer 1.23.0 on Python 2. | |
| Chainer 2.0 | chainer-2.0 | Chainer 1.23.0 on Python 3. |
| chainer-2.0:py2 | Chainer 1.23.0 on Python 2. | |
| MxNet 1.0 | mxnet | MxNet 1.0.0 on Python 3.6. |
| mxnet:py2 | MxNet 1.0.0 on Python 2. |
边栏推荐
- 【LeetCode】148. Sort linked list
- 5 key indicators of SEO: ranking + traffic + session + length of stay + bounce rate
- Coinlist how to operate the middle lot number security tutorial
- The 5th series of NFT works of missing parts was launched on the sandbox market platform
- numpy np tips: numpy数组的squeeze等处理
- Openmmlab environment configuration
- "Grammar sugar" -- my new programming knowledge
- SQL注入详解
- Flutter FittedBox组件
- Watch out for the stolen face! So many risks of face recognition used every day?
猜你喜欢

PHP extracts and analyzes table contents, and collects bidding information

2. play the chromatic harmonica
![[proteus simulation] Arduino uno key controls the flashing increase / decrease display of nixie tube](/img/28/33f3e9736a68439b5bcdc4e75c939c.png)
[proteus simulation] Arduino uno key controls the flashing increase / decrease display of nixie tube

Mathematical analysis_ Notes_ Chapter 3: limits

"How to carry out industrial positioning" in local / Park industrial planning

Turn 2D photos into 3D models to see NVIDIA's new AI "magic"!

代錶多樣性的彩色 NFT 系列上線 The Sandbox 市場平臺

地方/園區產業規劃之 “ 如何進行產業定比特 ”

SEO的5大关键指标:排名+流量+会话+停留时长+跳出率

单元测试覆盖率
随机推荐
English Grammar - pronunciation rules
UCLA | generative pre training for black box optimization
NFT insider 63: the sandbox reached a cooperation with Time magazine, and YGG established Spain's subdao
彻底理解数据库事务
【Kubernetes系列】Helm的安装使用
DAP data scheduling function improvement description
Nodejs 通过Heidisql连接mysql出现ER_BAD_DB_ERROR: Unknown database 'my_db_books'
Acmstreamopen return value problem
@Requestbody solution get parameter is null
如何筛选出和产品相关的词,精准排除掉无效词
Summary of various problems encountered by cocos2d-x
La gamme NFT Color, qui représente la diversité, est en ligne sur la plate - forme du marché Sandbox
ThinkPHP is integrated with esaywechat. What's wrong with wechat payment callback without callback?
openmmlab-环境配置
Detailed explanation of flex attributes in flex layout
【LeetCode】22. bracket-generating
WMS仓储管理系统的使用价值,你知道多少
Doubts about judging the tinyint field type of MySQL
"Comment positionner l'industrie" dans la planification industrielle locale / parc
Cesium drag 3D model