当前位置:网站首页>Statsmodels Library -- linear regression model
Statsmodels Library -- linear regression model
2022-06-26 04:44:00 【I am a little monster】
Catalog
Simple linear regression model
Multiple linear regression model
Yes statsmodels The linear regression model collation of the library can be compared with sklearn The arrangement of the linear regression model of the library can be used for reference https://blog.csdn.net/qq_57099024/article/details/122324764
https://blog.csdn.net/qq_57099024/article/details/122324764
Simple linear regression model
import statsmodels.formula.api as smf
import seaborn as sns
import pandas as pd
tips=sns.load_dataset('tips')# download seaborn Native data set tips
print(tips.head())# View the acquired dataset tips The first five elements of
total_bill tip sex smoker day time size 0 16.99 1.01 Female No Sun Dinner 2 1 10.34 1.66 Male No Sun Dinner 3 2 21.01 3.50 Male No Sun Dinner 3 3 23.68 3.31 Male No Sun Dinner 2 4 24.59 3.61 Female No Sun Dinner 4
# Specify the model , To the left of the wave line is the response variable , On the right is the independent variable
model=smf.ols(formula='tip~total_bill',data=tips)
# Use fit Methods to fit the model
results=model.fit()
# Use summary Method to view the results of the fitted model
print(results.summary())OLS Regression Results
==============================================================================
Dep. Variable: tip R-squared: 0.457
Model: OLS Adj. R-squared: 0.454
Method: Least Squares F-statistic: 203.4
Date: Wed, 05 Jan 2022 Prob (F-statistic): 6.69e-34
Time: 14:34:42 Log-Likelihood: -350.54
No. Observations: 244 AIC: 705.1
Df Residuals: 242 BIC: 712.1
Df Model: 1
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 0.9203 0.160 5.761 0.000 0.606 1.235
total_bill 0.1050 0.007 14.260 0.000 0.091 0.120
==============================================================================
Omnibus: 20.185 Durbin-Watson: 2.151
Prob(Omnibus): 0.000 Jarque-Bera (JB): 37.750
Skew: 0.443 Prob(JB): 6.35e-09
Kurtosis: 4.711 Cond. No. 53.0
==============================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.The results include the Intercept( intercept ) and total_bill. With these parameters, we can get the linear equation y=0.105x+0.920. These figures can be interpreted as :total_bill Every additional unit ( That is, the amount of each consumption increase 1 dollar ), Consumption increases 0.105 Units if you only need a coefficient , Can end results Of params Property to get .
print(results.params)
Intercept 0.920270
total_bill 0.105025
dtype: float64Multiple linear regression model
statsmodels Will automatically create a dummy variable , And remove reference variables to avoid multicollinearity , For example, gender is divided into male and female , Then the system will select the first male as the reference variable , After deletion, the male column will not be converted into a dummy variable , It will not become a factor that affects the response variable
import statsmodels.formula.api as smf
import seaborn as sns
import pandas as pd
tips=sns.load_dataset('tips')
print(tips.head())
print('----'*10)# Output horizontal lines to distinguish output
# Use the plus sign to pass multiple arguments into
model=smf.ols(formula='tip~total_bill+size+sex+smoker+day+time',data=tips)
results=model.fit()
print(results.summary())
print('----'*10)
print(results.params) total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
----------------------------------------
OLS Regression Results
==============================================================================
Dep. Variable: tip R-squared: 0.470
Model: OLS Adj. R-squared: 0.452
Method: Least Squares F-statistic: 26.06
Date: Wed, 05 Jan 2022 Prob (F-statistic): 1.20e-28
Time: 16:27:12 Log-Likelihood: -347.48
No. Observations: 244 AIC: 713.0
Df Residuals: 235 BIC: 744.4
Df Model: 8
Covariance Type: nonrobust
==================================================================================
coef std err t P>|t| [0.025 0.975]
----------------------------------------------------------------------------------
Intercept 0.5908 0.256 2.310 0.022 0.087 1.095
sex[T.Female] 0.0324 0.142 0.229 0.819 -0.247 0.311
smoker[T.No] 0.0864 0.147 0.589 0.556 -0.202 0.375
day[T.Fri] 0.1623 0.393 0.412 0.680 -0.613 0.937
day[T.Sat] 0.0408 0.471 0.087 0.931 -0.886 0.968
day[T.Sun] 0.1368 0.472 0.290 0.772 -0.793 1.066
time[T.Dinner] -0.0681 0.445 -0.153 0.878 -0.944 0.808
total_bill 0.0945 0.010 9.841 0.000 0.076 0.113
size 0.1760 0.090 1.966 0.051 -0.000 0.352
==============================================================================
Omnibus: 27.860 Durbin-Watson: 2.096
Prob(Omnibus): 0.000 Jarque-Bera (JB): 52.555
Skew: 0.607 Prob(JB): 3.87e-12
Kurtosis: 4.923 Cond. No. 281.
==============================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
----------------------------------------
Intercept 0.590837
sex[T.Female] 0.032441
smoker[T.No] 0.086408
day[T.Fri] 0.162259
day[T.Sat] 0.040801
day[T.Sun] 0.136779
time[T.Dinner] -0.068129
total_bill 0.094487
size 0.175992
dtype: float64边栏推荐
- Sixtool- source code of multi-functional and all in one generation hanging assistant
- Multipass中文文档-使用Multipass服务授权客户端
- ROS notes (07) - Implementation of client and server
- 1.24 learning summary
- Thinkphp6 parsing QR code
- 2022 talent strategic transformation under the development trend of digital economy
- Sort query
- Performance test comparison between PHP framework jsnpp and thinkphp6
- Notes on enterprise wechat development [original]
- Minecraft 1.16.5 biochemical 8 module 1.9 version 1.18 version synchronization
猜你喜欢

Yapi cross domain request plug-in installation

文件上传与安全狗

How can the intelligent transformation path of manufacturing enterprises be broken due to talent shortage and high cost?

ROS notes (07) - Implementation of client and server

Zhimeng CMS will file a lawsuit against infringing websites

Nabicat连接:本地Mysql&&云服务Mysql以及报错

Thinkphp6 implements a simple lottery system

Modify the number of Oracle connections

Nabicat connection: local MySQL & cloud service MySQL and error reporting

Sixtool- source code of multi-functional and all in one generation hanging assistant
随机推荐
PHP has the problem of using strtotime to obtain time in months and months [original]
防撤回测试记录
Solution to composer error could not find package
Multipass Chinese document - use instance command alias
Rsync common error messages (common errors on the window)
Oracle 數據泵導錶
2021/11/6-burpsuit packet capturing and web page source code modification
Gateway can not connect to tcp://127.0.0.1: Connection refused
Multipass Chinese documents - improve mount performance
1.21 learning summary
Group by and order by are used together
Multipass中文文档-使用Multipass服务授权客户端
Multipass中文文档-提高挂载性能
2022.2.11
digital image processing
Numpy random number
Numpy data input / output
修改Oracle连接数
PHP design function getmaxstr to find the longest symmetric string in a string - [original]
Redis cache message queue