当前位置:网站首页>HPSO and multi-core LSSVM based network intrusion detection
HPSO and multi-core LSSVM based network intrusion detection
2022-08-11 01:56:00 【Midor Tech House】
Summary:
Aiming at the problems of low accuracy and insufficient feature extraction ability of existing intrusion detection technology, a network intrusion detection model based on hybrid particle swarm optimization and multi-core least squares support vector machine was constructed.Firstly, aiming at the problems of weak generalization ability and poor learning ability of single-kernel least squares support vector machine, this model combines the advantages of polynomial kernel function and radial basis function, and constructs multi-kernel least squares support vector machine;A hybrid particle swarm algorithm for intrusion detection data feature extraction and multi-core least squares support vector machine parameter optimization; finally, the extracted features are used as the input of the multi-core least squares support vector machine after parameter optimization to realize the intrusion detection data set.classification identification.To evaluate the effectiveness of the proposed model, experiments are conducted based on NSL-KDD, UNSW-NB15 and CICIDS-2017 datasets, and the experimental results show that the detection effect of the proposed model is significantly better than other traditional models.
Content Directory:
1 Multicore LSSVM
2 Hybrid particle swarm algorithm HPSO
2.1 Particle Swarm Optimization
2.2 Binary Particle Swarm Optimization
2.3 Hybrid particle swarm algorithm HPSO
2.3.1 Particle coding
2.3.2 Fitness value function based on MKLSSVM
2.3.3 HPSO algorithm process
3 Network intrusion detection model based on HPSO and multi-core LSSVM
4 Simulation experiment
4.1 Experimental environment and evaluation indicators
4.2 Experimental data
4.3 Model parameter settings
4.4 Evaluation index of experimental results
4.4.1 Comparison of LSSVM models under different kernel functions
4.4.2 Comparison of HPSO-MKLSSVM with LSSVM and MKLSSVM
4.4.3 Comparison of HPSO-MKLSSVM with PSO-MKLSSVM and BPSO-MKLSSVM
4.4.4 Comparison with other existing detection models
5 Conclusion
With the development of information technologyÿ
边栏推荐
- async和await的理解和用法
- 22-7-31
- 进程间通信(IPC)的分类以及通信方式的发展
- postgresql parameter meaning
- [Detailed explanation of C data storage] (1) - in-depth analysis of the storage of shaping data in memory
- MySQL八股文背诵版(续)
- 联盛德W801系列6-从微信小程序的角度来分析W801的蓝牙通信源码(indicate方式)
- 14.cuBLAS开发指南中文版--cuBLAS中的Level-1函数nrm2()和rot()
- 络达开发---串口日志&日志过滤
- MySQL中的DDL常规操作总结
猜你喜欢

paddle2.3和torch1.8在SentenceBert上的性能对比

通过热透镜聚焦的高斯光束

MySQL indexes and transactions

MySQL - 一条SQL在MySQL中是如何被执行的?

漏洞管理计划的未来趋势

Lianshengde W801 series 5-WeChat applet and W801 Bluetooth communication routine (read notes)

2022英伟达显卡排名天梯图

ARM开发(四)新手小白如何阅读芯片手册,裸机驱动开发步骤以及纯汇编实现点灯,汇编结合c点灯,c实现点灯

OptiFDTD应用:用于光纤入波导耦合的硅纳米锥仿真

Is container technology really the savior of environmental management?
随机推荐
【微波工程学习记录1】功率分配器和定向耦合器
两日总结九
gRPC基础概念:闭包
Summary of DDL routine operations in MySQL
络达开发---串口日志&日志过滤
21. Aliyun oss
[oops-framework] Template project [oops-game-kit] Introduction
络达开发---UI定义+自定义按钮事件
sql 使用到where和groupby时到底怎么建立索引?
如何开展性能测试,你知道吗?
Shengxin experiment record (part2)--tf.reduce_sum() usage introduction
Gaussian beam focused by thermal lens
Construction inspection, no rules and no square
最新国产电源厂家及具体型号pin-to-pin替代手册发布
C # - delegate detailed usage
如何实现FPGA的可重复性设计
【HFSS学习记录2】腔体滤波器的设计与仿真
迭代器和生成器
WinForm (5) control and its members
uni-app实现app和H5调用手机拨号功能