当前位置:网站首页>scipy.sparse.csr_ matrix
scipy.sparse.csr_ matrix
2022-07-26 02:19:00 【Wanderer001】
Reference resources https://cloud.tencent.com/developer/article/1525065
class scipy.sparse.csr_matrix(arg1, shape=None, dtype=None, copy=False)[source]
Compressed Sparse Row matrix
This can be instantiated in several ways:
csr_matrix(D)
with a dense matrix or rank-2 ndarray D
csr_matrix(S)
with another sparse matrix S (equivalent to S.tocsr())
csr_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.
csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
where data, row_ind and col_ind satisfy the relationship a[row_ind[k], col_ind[k]] = data[k].
csr_matrix((data, indices, indptr), [shape=(M, N)])
is the standard CSR representation where the column indices for row i are stored in indices[indptr[i]:indptr[i+1]] and their corresponding values are stored in data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.
Notes
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
Advantages of the CSR format
efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
efficient row slicing
fast matrix vector products
Disadvantages of the CSR format
slow column slicing operations (consider CSC)
changes to the sparsity structure are expensive (consider LIL or DOK)
Examples
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> csr_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>>
>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
>>>
>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])As an example of how to construct a CSR matrix incrementally, the following snippet builds a term-document matrix from texts:
>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]]
>>> indptr = [0]
>>> indices = []
>>> data = []
>>> vocabulary = {}
>>> for d in docs:
... for term in d:
... index = vocabulary.setdefault(term, len(vocabulary))
... indices.append(index)
... data.append(1)
... indptr.append(len(indices))
...
>>> csr_matrix((data, indices, indptr), dtype=int).toarray()
array([[2, 1, 0, 0],
[0, 1, 1, 1]])Attributes
nnz Number of stored values, including explicit zeros.
has_sorted_indices Determine whether the matrix has sorted indices
dtype (dtype) Data type of the matrix
shape (2-tuple) Shape of the matrix
ndim (int) Number of dimensions (this is always 2)
data CSR format data array of the matrix
indices CSR format index array of the matrix
indptr CSR format index pointer array of the matrix
Methods
arcsin() Element-wise arcsin.
arcsinh() Element-wise arcsinh.
arctan() Element-wise arctan.
arctanh() Element-wise arctanh.
asformat(format) Return this matrix in a given sparse format
asfptype() Upcast matrix to a floating point format (if necessary)
astype(t)
ceil() Element-wise ceil.
check_format([full_check]) check whether the matrix format is valid
conj()
conjugate()
copy()
count_nonzero() Number of non-zero entries, equivalent to
deg2rad() Element-wise deg2rad.
diagonal() Returns the main diagonal of the matrix
dot(other) Ordinary dot product
eliminate_zeros() Remove zero entries from the matrix
expm1() Element-wise expm1.
floor() Element-wise floor.
getH()
get_shape()
getcol(i) Returns a copy of column i of the matrix, as a (m x 1) CSR matrix (column vector).
getformat()
getmaxprint()
getnnz([axis]) Number of stored values, including explicit zeros.
getrow(i) Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).
log1p() Element-wise log1p.
max([axis, out]) Return the maximum of the matrix or maximum along an axis.
maximum(other)
mean([axis, dtype, out]) Compute the arithmetic mean along the specified axis.
min([axis, out]) Return the minimum of the matrix or maximum along an axis.
minimum(other)
multiply(other) Point-wise multiplication by another matrix, vector, or scalar.
nonzero() nonzero indices
power(n[, dtype]) This function performs element-wise power.
prune() Remove empty space after all non-zero elements.
rad2deg() Element-wise rad2deg.
reshape(shape[, order]) Gives a new shape to a sparse matrix without changing its data.
rint() Element-wise rint.
set_shape(shape)
setdiag(values[, k]) Set diagonal or off-diagonal elements of the array.
sign() Element-wise sign.
sin() Element-wise sin.
sinh() Element-wise sinh.
sort_indices() Sort the indices of this matrix in place
sorted_indices() Return a copy of this matrix with sorted indices
sqrt() Element-wise sqrt.
sum([axis, dtype, out]) Sum the matrix elements over a given axis.
sum_duplicates() Eliminate duplicate matrix entries by adding them together
tan() Element-wise tan.
tanh() Element-wise tanh.
toarray([order, out]) See the docstring for spmatrix.toarray.
tobsr([blocksize, copy]) Convert this matrix to Block Sparse Row format.
tocoo([copy]) Convert this matrix to COOrdinate format.
tocsc([copy])
tocsr([copy]) Convert this matrix to Compressed Sparse Row format.
todense([order, out]) Return a dense matrix representation of this matrix.
todia([copy]) Convert this matrix to sparse DIAgonal format.
todok([copy]) Convert this matrix to Dictionary Of Keys format.
tolil([copy]) Convert this matrix to LInked List format.
transpose([axes, copy]) Reverses the dimensions of the sparse matrix.
trunc() Element-wise trunc.
边栏推荐
- 图解B+树的插入过程
- 1. Mx6ul core module serial USB interface test (VI)
- 2022-07-17
- obsidian移动端PC段同步
- I came to the library applet check-in process analysis
- Worthington papain - production of glycopeptides from purified proteoglycans (attached Literature)
- [C language brush leetcode] 735. Planetary collision (m)
- The third question of leetcode 302 weekly Games -- query the number with the smallest k after cutting the number
- From a data incremental processing problem, we can see the consciousness gap of technicians
- Navica tool imports remote MySQL into local MySQL database
猜你喜欢

TCP three handshakes and four waves

prometheus+blackbox-exporter+grafana 监控服务器端口及url地址

一款可插拔的AM335X工控模块板载wifi模块

Sword finger offer 28. symmetric binary tree

I.MX6UL核心模块使用连载-USB接口测试 (六)

Ti am335x industrial control module uses the Debian system of beaglebone (BBB)

IDEA运行web项目出现乱码问题有效解决(附详细步骤)

Ti AM335X工控模块矩阵键盘电路的设计与驱动移植

Error reporting caused by local warehouse

Design and driver transplantation of matrix keyboard circuit of Ti am335x industrial control module
随机推荐
Are you still using ==0 null equal to judge null values? How much do you know about isempty and isblank
scipy.sparse.csr_matrix
CD from grabbing the track to building a streaming media server -- a case study of "moon in the hometown of sleep"
Worthington papain - production of glycopeptides from purified proteoglycans (attached Literature)
MySQL(4)
Adruino 基础实验学习(一)
18.删除链表的倒数第n个节点
[2019] [paper notes] tunable THz broadband absorption based on metamaterials——
MySQL transaction isolation level
Pytorch的API总览
Web3.0 blog DAPP development practice [2022]
1. Mx6ul core module serial USB interface test (VI)
1. Mx6ul core module uses serial EMMC read / write test (IV)
商业智能BI全解析,探寻BI本质与发展趋势
C unit test
LeetCode_ Dynamic programming_ Medium_ 264. Ugly number II
TI AM335x工控模块网络跟文件系统NFS的实现
[2021] [paper notes] biological effects of cell membrane under infrared and THz - effect is a phenomenon, action is a mechanism - the benefits of THz to medicine
1. Mx6ul core module uses serial NAND FLASH read / write test (III)
Wechat applet - get user location (longitude and latitude + city)