当前位置:网站首页>scipy.sparse.csr_ matrix
scipy.sparse.csr_ matrix
2022-07-26 02:19:00 【Wanderer001】
Reference resources https://cloud.tencent.com/developer/article/1525065
class scipy.sparse.csr_matrix(arg1, shape=None, dtype=None, copy=False)[source]
Compressed Sparse Row matrix
This can be instantiated in several ways:
csr_matrix(D)
with a dense matrix or rank-2 ndarray D
csr_matrix(S)
with another sparse matrix S (equivalent to S.tocsr())
csr_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.
csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
where data, row_ind and col_ind satisfy the relationship a[row_ind[k], col_ind[k]] = data[k].
csr_matrix((data, indices, indptr), [shape=(M, N)])
is the standard CSR representation where the column indices for row i are stored in indices[indptr[i]:indptr[i+1]] and their corresponding values are stored in data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.
Notes
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
Advantages of the CSR format
efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
efficient row slicing
fast matrix vector products
Disadvantages of the CSR format
slow column slicing operations (consider CSC)
changes to the sparsity structure are expensive (consider LIL or DOK)
Examples
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> csr_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>>
>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
>>>
>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])As an example of how to construct a CSR matrix incrementally, the following snippet builds a term-document matrix from texts:
>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]]
>>> indptr = [0]
>>> indices = []
>>> data = []
>>> vocabulary = {}
>>> for d in docs:
... for term in d:
... index = vocabulary.setdefault(term, len(vocabulary))
... indices.append(index)
... data.append(1)
... indptr.append(len(indices))
...
>>> csr_matrix((data, indices, indptr), dtype=int).toarray()
array([[2, 1, 0, 0],
[0, 1, 1, 1]])Attributes
nnz Number of stored values, including explicit zeros.
has_sorted_indices Determine whether the matrix has sorted indices
dtype (dtype) Data type of the matrix
shape (2-tuple) Shape of the matrix
ndim (int) Number of dimensions (this is always 2)
data CSR format data array of the matrix
indices CSR format index array of the matrix
indptr CSR format index pointer array of the matrix
Methods
arcsin() Element-wise arcsin.
arcsinh() Element-wise arcsinh.
arctan() Element-wise arctan.
arctanh() Element-wise arctanh.
asformat(format) Return this matrix in a given sparse format
asfptype() Upcast matrix to a floating point format (if necessary)
astype(t)
ceil() Element-wise ceil.
check_format([full_check]) check whether the matrix format is valid
conj()
conjugate()
copy()
count_nonzero() Number of non-zero entries, equivalent to
deg2rad() Element-wise deg2rad.
diagonal() Returns the main diagonal of the matrix
dot(other) Ordinary dot product
eliminate_zeros() Remove zero entries from the matrix
expm1() Element-wise expm1.
floor() Element-wise floor.
getH()
get_shape()
getcol(i) Returns a copy of column i of the matrix, as a (m x 1) CSR matrix (column vector).
getformat()
getmaxprint()
getnnz([axis]) Number of stored values, including explicit zeros.
getrow(i) Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).
log1p() Element-wise log1p.
max([axis, out]) Return the maximum of the matrix or maximum along an axis.
maximum(other)
mean([axis, dtype, out]) Compute the arithmetic mean along the specified axis.
min([axis, out]) Return the minimum of the matrix or maximum along an axis.
minimum(other)
multiply(other) Point-wise multiplication by another matrix, vector, or scalar.
nonzero() nonzero indices
power(n[, dtype]) This function performs element-wise power.
prune() Remove empty space after all non-zero elements.
rad2deg() Element-wise rad2deg.
reshape(shape[, order]) Gives a new shape to a sparse matrix without changing its data.
rint() Element-wise rint.
set_shape(shape)
setdiag(values[, k]) Set diagonal or off-diagonal elements of the array.
sign() Element-wise sign.
sin() Element-wise sin.
sinh() Element-wise sinh.
sort_indices() Sort the indices of this matrix in place
sorted_indices() Return a copy of this matrix with sorted indices
sqrt() Element-wise sqrt.
sum([axis, dtype, out]) Sum the matrix elements over a given axis.
sum_duplicates() Eliminate duplicate matrix entries by adding them together
tan() Element-wise tan.
tanh() Element-wise tanh.
toarray([order, out]) See the docstring for spmatrix.toarray.
tobsr([blocksize, copy]) Convert this matrix to Block Sparse Row format.
tocoo([copy]) Convert this matrix to COOrdinate format.
tocsc([copy])
tocsr([copy]) Convert this matrix to Compressed Sparse Row format.
todense([order, out]) Return a dense matrix representation of this matrix.
todia([copy]) Convert this matrix to sparse DIAgonal format.
todok([copy]) Convert this matrix to Dictionary Of Keys format.
tolil([copy]) Convert this matrix to LInked List format.
transpose([axes, copy]) Reverses the dimensions of the sparse matrix.
trunc() Element-wise trunc.
边栏推荐
- Illustration of the insertion process of b+ tree
- Master-slave replication in MySQL
- 商业智能BI全解析,探寻BI本质与发展趋势
- 必会面试题:1.浅拷贝和深拷贝_深拷贝
- 【2020】【论文笔记】磁控溅射法生长Bi2Te3/CoFeB双层异质结——
- Design and driver transplantation of matrix keyboard circuit of Ti am335x industrial control module
- These practical security browser plug-ins improve your efficiency
- 1. Mx6ul core module serial USB interface test (VI)
- Adruino 基础实验学习(一)
- Binary logs in MySQL
猜你喜欢

Li Kou 148: sorting linked list

I.MX6UL核心模块使用连载-Iot-6ULX核心模块简要介绍 (一)

Illustration of the insertion process of b+ tree

图解B+树的插入过程

Activiti workflow gateway
![Web3.0 blog DAPP development practice [2022]](/img/18/f386246ff6ffbd0a42df57c3cd9170.png)
Web3.0 blog DAPP development practice [2022]
![[2020] [paper notes] growth of bi2te3/cofeb double-layer heterojunction by magnetron sputtering——](/img/5d/7d26e2d0d832c95e1cc011995ce774.png)
[2020] [paper notes] growth of bi2te3/cofeb double-layer heterojunction by magnetron sputtering——

1. Mx6ul core module uses serial NAND FLASH read / write test (III)

1. Mx6ul core module serial use - touch screen calibration (IX)

prometheus+process-exporter+grafana 监控进程的资源使用
随机推荐
18_ Request file
2022-07-17
微信小程序解密并拆包获取源码教程
【2021】【论文笔记】6G技术愿景——OTFS调制技术
1. Mx6ul core module use serial TF card read / write test (V)
Adruino basic experimental learning (I)
IDEA运行web项目出现乱码问题有效解决(附详细步骤)
A pluggable am335x industrial control module onboard WiFi module
Binary logs in MySQL
[2020] [paper notes] growth of bi2te3/cofeb double-layer heterojunction by magnetron sputtering——
一款可插拔的AM335X工控模块板载wifi模块
LeetCode_ Dynamic programming_ Medium_ 264. Ugly number II
Turn: do the right thing efficiently
I.MX6UL核心模块使用连载-查看系统信息 (二)
[2021] [paper notes] biological effects of cell membrane under infrared and THz - effect is a phenomenon, action is a mechanism - the benefits of THz to medicine
2. Login - verification code function and saving login status
I.MX6UL核心模块使用连载-USB接口测试 (六)
【2020】【论文笔记】磁控溅射法生长Bi2Te3/CoFeB双层异质结——
19_ Request forms and documents
[Android development IOS series] Language: swift vs kotlin