当前位置:网站首页>Determinant and its properties

Determinant and its properties

2022-06-10 02:58:00 I don't know anything Bukit

Now let's move on to the second part of the course —— determinant , This section will focus on the determinant of the equation .

One 、 The nature of determinants

A determinant is a number corresponding to a matrix , It reflects the properties of the square matrix .

  • nature 1: Unit matrix I I I, ∣ I ∣ = 1 \vert I\vert=1 I=1
  • nature 2: After swapping two lines , The value sign of determinant is opposite

for instance :

[ 1 0 0 1 ] = 1 [ 0 1 1 0 ] = − 1 \begin{bmatrix} 1&0\\0&1 \end{bmatrix}=1\quad \begin{bmatrix} 0&1\\1&0 \end{bmatrix}=-1 [1001]=1[0110]=1
For one 2 × 2 2\times2 2×2 Matrix , The way to calculate the determinant is to multiply the main diagonal elements and then subtract them :
∣ a b c d ∣ = a d − b c \left | \begin{matrix} a&b\\c&d \end{matrix} \right|=ad-bc acbd=adbc

  • nature 3 The common multiple of a row can be outside the determinant
    ∣ t a t b c d ∣ = t ∣ a b c d ∣ \left | \begin{matrix} ta&tb\\c&d \end{matrix} \right|=t\left | \begin{matrix} a&b\\c&d \end{matrix} \right| tactbd=tacbd

  • nature 4 Determinants can be added to each other ( The determinant is linear between lines )
    ∣ a + a ′ b + b ′ c d ∣ = ∣ a b c d ∣ + ∣ a ′ b ′ c d ∣ \left | \begin{matrix} a+a'&b+b'\\c&d \end{matrix} \right|=\left | \begin{matrix} a&b\\c&d \end{matrix} \right|+\left | \begin{matrix} a'&b'\\c&d \end{matrix} \right| a+acb+bd=acbd+acbd

The following properties can be determined from the above 4 Personality quality export :

  • nature 5 The same row will make the determinant 0
    Utilization property 2 This property can be obtained . Because swapping peers will change their symbols , But the determinant is still the original determinant , The determinant should be the same , The only way to exchange symbols without changing them is 0 了 .

The same row causes the determinant to be 0, The same row makes the matrix irreversible .

  • nature 6 Subtract multiples of one row from other rows , The value of the determinant does not change
    This property tells us that the elimination of a matrix does not change the value of its determinant .
    By nature 5 We can draw :
    ∣ a b c − l a d − l b ∣ = ∣ a b c d ∣ + ∣ a b − l a − l b ∣ \left | \begin{matrix} a&b\\c-la&d-lb \end{matrix} \right|=\left | \begin{matrix} a&b\\c&d \end{matrix} \right|+\left | \begin{matrix} a&b\\-la&-lb \end{matrix} \right| aclabdlb=acbd+alablb
    Again by nature 4 There can be :
    ∣ a b c − l a d − l b ∣ = ∣ a b c d ∣ + ∣ a b − l a − l b ∣ = ∣ a b c d ∣ − l ∣ a b a b ∣ = ∣ a b c d ∣ \left | \begin{matrix} a&b\\c-la&d-lb \end{matrix} \right|=\left | \begin{matrix} a&b\\c&d \end{matrix} \right|+\left | \begin{matrix} a&b\\-la&-lb \end{matrix} \right|=\left | \begin{matrix} a&b\\c&d \end{matrix} \right|-l\left | \begin{matrix} a&b\\a&b \end{matrix} \right|=\left | \begin{matrix} a&b\\c&d \end{matrix} \right| aclabdlb=acbd+alablb=acbdlaabb=acbd

  • nature 7 Zero rows will cause the determinant to be 0
    This nature 3 Easy to come by , Put forward a 0 The coefficient is OK

  • nature 8 The determinant of the upper triangular matrix is equal to the product of the diagonal
    d e t ( U ) = ∣ d 1 ∗ ⋯ ∗ ∗ 0 d 2 ∗ ⋯ ∗ 0 0 0 ⋯ ∗ 0 0 0 0 d n ∣ = d 1 d 2 ⋯ d n det(U)=\left | \begin{matrix} d_1&*&\cdots&*&*\\0&d_2&*&\cdots&*\\ 0&0&0&\cdots&*\\ 0&0&0 &0&d_n \end{matrix} \right|=d_1d_2\cdots d_n det(U)=d1000d200000dn=d1d2dn
    This property is also very easy to understand , Utilization property 3 Extract the numbers from each line , Reuse properties 6 Put these asterisks “ get some soy sauce ”, And make use of the nature 1 You can get :
    d 1 d 2 ⋯ d n ∣ 1 ∗ ⋯ ∗ ∗ 0 1 ∗ ⋯ ∗ 0 0 0 ⋯ ∗ 0 0 0 0 1 ∣ = d 1 d 2 ⋯ d n d_1d_2\cdots d_n\left | \begin{matrix} 1&*&\cdots&*&*\\0&1&*&\cdots&*\\ 0&0&0&\cdots&*\\ 0&0&0 &0&1 \end{matrix} \right|=d_1d_2\cdots d_n d1d2dn10001000001=d1d2dn

  • nature 9 If and only if A A A It's a singular matrix ( Irreversible , There are zero rows ), ∣ A ∣ \vert A\vert A zero ; ∣ A ∣ ≠ 0 \vert A \vert \ne0 A=0 Matrices are nonsingular ( reversible , There are no zero lines )

The first nine properties are all about determinants , Next, we will add two important properties about matrices :

  • nature 10 ∣ A B ∣ = ∣ A ∣ ∣ B ∣ \vert AB\vert=\vert A\vert \vert B\vert AB=AB
    The determinant of the product of two square matrices is equal to the determinant of the two square matrices and then the product .
    inference 10.1: The determinant of an invertible matrix and the determinant of its inverse matrix are reciprocal
    ∣ A − 1 ∣ = 1 ∣ A ∣ \vert A^{-1}\vert=\frac{1}{\vert A\vert} A1=A1
    inference 10.2:
    ∣ A n ∣ = ∣ A ∣ n \vert A^n\vert=\vert A\vert^n An=An

  • nature 11 The determinant of a matrix is equal to the corresponding determinant of the matrix after its transpose
    prove : Let this matrix be A A A, Make it L U LU LU decompose
    ∣ A T ∣ = ∣ ( L U ) T ∣ = ∣ U T L T ∣ = ∣ U T ∣ ∣ L T ∣ \vert A^T\vert=\vert (LU)^T\vert=\vert U^TL^T\vert=\vert U^T\vert\vert L^T\vert AT=(LU)T=UTLT=UTLT
    Because the transpose of the upper and lower triangular matrix does not affect the value of its determinant , therefore :
    ∣ A T ∣ = ∣ U ∣ ∣ L ∣ \vert A^T\vert=\vert U\vert\vert L\vert AT=UL
    That is to say :
    ∣ A ∣ = ∣ A T ∣ \vert A\vert=\vert A^T\vert A=AT
    inference : If a determinant has a column of zero vectors , So this determinant is 0. This will be used in the next section .

原网站

版权声明
本文为[I don't know anything Bukit]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/161/202206100254596099.html