当前位置:网站首页>Determinant and its properties
Determinant and its properties
2022-06-10 02:58:00 【I don't know anything Bukit】
Now let's move on to the second part of the course —— determinant , This section will focus on the determinant of the equation .
One 、 The nature of determinants
A determinant is a number corresponding to a matrix , It reflects the properties of the square matrix .
- nature 1: Unit matrix I I I, ∣ I ∣ = 1 \vert I\vert=1 ∣I∣=1
- nature 2: After swapping two lines , The value sign of determinant is opposite
for instance :
[ 1 0 0 1 ] = 1 [ 0 1 1 0 ] = − 1 \begin{bmatrix} 1&0\\0&1 \end{bmatrix}=1\quad \begin{bmatrix} 0&1\\1&0 \end{bmatrix}=-1 [1001]=1[0110]=−1
For one 2 × 2 2\times2 2×2 Matrix , The way to calculate the determinant is to multiply the main diagonal elements and then subtract them :
∣ a b c d ∣ = a d − b c \left | \begin{matrix} a&b\\c&d \end{matrix} \right|=ad-bc ∣∣∣∣acbd∣∣∣∣=ad−bc
nature 3 The common multiple of a row can be outside the determinant
∣ t a t b c d ∣ = t ∣ a b c d ∣ \left | \begin{matrix} ta&tb\\c&d \end{matrix} \right|=t\left | \begin{matrix} a&b\\c&d \end{matrix} \right| ∣∣∣∣tactbd∣∣∣∣=t∣∣∣∣acbd∣∣∣∣nature 4 Determinants can be added to each other ( The determinant is linear between lines )
∣ a + a ′ b + b ′ c d ∣ = ∣ a b c d ∣ + ∣ a ′ b ′ c d ∣ \left | \begin{matrix} a+a'&b+b'\\c&d \end{matrix} \right|=\left | \begin{matrix} a&b\\c&d \end{matrix} \right|+\left | \begin{matrix} a'&b'\\c&d \end{matrix} \right| ∣∣∣∣a+a′cb+b′d∣∣∣∣=∣∣∣∣acbd∣∣∣∣+∣∣∣∣a′cb′d∣∣∣∣
The following properties can be determined from the above 4 Personality quality export :
- nature 5 The same row will make the determinant 0
Utilization property 2 This property can be obtained . Because swapping peers will change their symbols , But the determinant is still the original determinant , The determinant should be the same , The only way to exchange symbols without changing them is 0 了 .
The same row causes the determinant to be 0, The same row makes the matrix irreversible .
nature 6 Subtract multiples of one row from other rows , The value of the determinant does not change
This property tells us that the elimination of a matrix does not change the value of its determinant .
By nature 5 We can draw :
∣ a b c − l a d − l b ∣ = ∣ a b c d ∣ + ∣ a b − l a − l b ∣ \left | \begin{matrix} a&b\\c-la&d-lb \end{matrix} \right|=\left | \begin{matrix} a&b\\c&d \end{matrix} \right|+\left | \begin{matrix} a&b\\-la&-lb \end{matrix} \right| ∣∣∣∣ac−labd−lb∣∣∣∣=∣∣∣∣acbd∣∣∣∣+∣∣∣∣a−lab−lb∣∣∣∣
Again by nature 4 There can be :
∣ a b c − l a d − l b ∣ = ∣ a b c d ∣ + ∣ a b − l a − l b ∣ = ∣ a b c d ∣ − l ∣ a b a b ∣ = ∣ a b c d ∣ \left | \begin{matrix} a&b\\c-la&d-lb \end{matrix} \right|=\left | \begin{matrix} a&b\\c&d \end{matrix} \right|+\left | \begin{matrix} a&b\\-la&-lb \end{matrix} \right|=\left | \begin{matrix} a&b\\c&d \end{matrix} \right|-l\left | \begin{matrix} a&b\\a&b \end{matrix} \right|=\left | \begin{matrix} a&b\\c&d \end{matrix} \right| ∣∣∣∣ac−labd−lb∣∣∣∣=∣∣∣∣acbd∣∣∣∣+∣∣∣∣a−lab−lb∣∣∣∣=∣∣∣∣acbd∣∣∣∣−l∣∣∣∣aabb∣∣∣∣=∣∣∣∣acbd∣∣∣∣nature 7 Zero rows will cause the determinant to be 0
This nature 3 Easy to come by , Put forward a 0 The coefficient is OKnature 8 The determinant of the upper triangular matrix is equal to the product of the diagonal
d e t ( U ) = ∣ d 1 ∗ ⋯ ∗ ∗ 0 d 2 ∗ ⋯ ∗ 0 0 0 ⋯ ∗ 0 0 0 0 d n ∣ = d 1 d 2 ⋯ d n det(U)=\left | \begin{matrix} d_1&*&\cdots&*&*\\0&d_2&*&\cdots&*\\ 0&0&0&\cdots&*\\ 0&0&0 &0&d_n \end{matrix} \right|=d_1d_2\cdots d_n det(U)=∣∣∣∣∣∣∣∣d1000∗d200⋯∗00∗⋯⋯0∗∗∗dn∣∣∣∣∣∣∣∣=d1d2⋯dn
This property is also very easy to understand , Utilization property 3 Extract the numbers from each line , Reuse properties 6 Put these asterisks “ get some soy sauce ”, And make use of the nature 1 You can get :
d 1 d 2 ⋯ d n ∣ 1 ∗ ⋯ ∗ ∗ 0 1 ∗ ⋯ ∗ 0 0 0 ⋯ ∗ 0 0 0 0 1 ∣ = d 1 d 2 ⋯ d n d_1d_2\cdots d_n\left | \begin{matrix} 1&*&\cdots&*&*\\0&1&*&\cdots&*\\ 0&0&0&\cdots&*\\ 0&0&0 &0&1 \end{matrix} \right|=d_1d_2\cdots d_n d1d2⋯dn∣∣∣∣∣∣∣∣1000∗100⋯∗00∗⋯⋯0∗∗∗1∣∣∣∣∣∣∣∣=d1d2⋯dnnature 9 If and only if A A A It's a singular matrix ( Irreversible , There are zero rows ), ∣ A ∣ \vert A\vert ∣A∣ zero ; ∣ A ∣ ≠ 0 \vert A \vert \ne0 ∣A∣=0 Matrices are nonsingular ( reversible , There are no zero lines )
The first nine properties are all about determinants , Next, we will add two important properties about matrices :
nature 10 ∣ A B ∣ = ∣ A ∣ ∣ B ∣ \vert AB\vert=\vert A\vert \vert B\vert ∣AB∣=∣A∣∣B∣
The determinant of the product of two square matrices is equal to the determinant of the two square matrices and then the product .
inference 10.1: The determinant of an invertible matrix and the determinant of its inverse matrix are reciprocal
∣ A − 1 ∣ = 1 ∣ A ∣ \vert A^{-1}\vert=\frac{1}{\vert A\vert} ∣A−1∣=∣A∣1
inference 10.2:
∣ A n ∣ = ∣ A ∣ n \vert A^n\vert=\vert A\vert^n ∣An∣=∣A∣nnature 11 The determinant of a matrix is equal to the corresponding determinant of the matrix after its transpose
prove : Let this matrix be A A A, Make it L U LU LU decompose
∣ A T ∣ = ∣ ( L U ) T ∣ = ∣ U T L T ∣ = ∣ U T ∣ ∣ L T ∣ \vert A^T\vert=\vert (LU)^T\vert=\vert U^TL^T\vert=\vert U^T\vert\vert L^T\vert ∣AT∣=∣(LU)T∣=∣UTLT∣=∣UT∣∣LT∣
Because the transpose of the upper and lower triangular matrix does not affect the value of its determinant , therefore :
∣ A T ∣ = ∣ U ∣ ∣ L ∣ \vert A^T\vert=\vert U\vert\vert L\vert ∣AT∣=∣U∣∣L∣
That is to say :
∣ A ∣ = ∣ A T ∣ \vert A\vert=\vert A^T\vert ∣A∣=∣AT∣
inference : If a determinant has a column of zero vectors , So this determinant is 0. This will be used in the next section .
边栏推荐
猜你喜欢

微信小程序 音乐播放代码(播放方式,歌词滚动)

Tensorflow. Mobilenet for getting started with JS

17正交矩阵和Gram-Schmidt正交化

npm 报错 Class extends value undefined is not a constructor or null

Technology dry goods | linkis practice: analysis of new engine implementation process

Vscade C language code ctrl+ left key cannot jump to definition

TS 38.304

Wechat applet music playing code (playing mode, lyrics scrolling)

Explain Seaborn in detail. Just read this one

Cat dog classification based on tensorflow
随机推荐
Yocto实用技巧
在子集合中第一個元素是由另一個數組插入的
2022.05 esp32 air upgrade OTA
修改谷歌浏览器Google Chrome缓存位置
Introduction to 51 single chip microcomputer infrared communication
19行列式公式、代数余子式
Sql Server sql语句创建索引
Redis迭代查询详解及其使用:Scan命令、Sscan命令、Hscan命令、Zscan命令
Jupyter notebook configuring virtual environments
uwsgi loading shared libraries:libicui18n.so.58 异常处理
TS 38.304
第六章 半导体存储器【微机原理】
P1082 [NOIP2012 提高组] 同余方程
Anaconda modify file save path
The local storage database SQLite of the uni app mobile terminal has no storage restrictions
有关直连接口的开发
Technology dry goods | linkis practice: analysis of new engine implementation process
Yocto practical skills
^27 timer related problems
generate for 和 for 区别