当前位置:网站首页>(dkby) DFL learning notes
(dkby) DFL learning notes
2022-07-24 07:50:00 【Electric power department of University of Technology】
One 、DFL Change your mind : First convert the video into pictures , Extract faces from pictures , Learn features from faces . Then apply the model , First change the face of the picture , And then combine the pictures into a video , At the same time, bring the audio track of the original video .
Two 、 technological process :
1.src Video decomposition image 2.dst Video decomposition image
3.src Extract the face 4.dst Extract the face
5. Training models 6. Application model 7. Synthetic video
3、 ... and 、 Script :
2) src Video extraction image extract images from video data_src.bat
3) dst Video extraction image ( Full frame rate ) extract images from video data_dst FULL FPS.bat
4) src Automatically extract face data_src faceset extract.bat
5) dst Automatically extract face data_dst faceset extract.bat
6) Training SAEHD train SAEHD.bat
7) application SAEHD merge SAEHD.bat
8) synthesis MP4 video merged to mp4.bat
Four 、 Pre training model :
If you use someone else's model :use pretrain mode Change it to N, Turn off the pre training mode so that the model will restore the iteration count to 0
If you train the model yourself : Create the model normally , Pre training mode selection n, then src and dst Of aligned In the folder , Put your existing face data pictures ,src and dst It doesn't matter to repeat , The more pictures, the better , The more complicated the better .
5、 ... and 、 Training parameters
1.[0] Which GPU indexes to choose? : Please enter GPU Serial number
2.Choose one of saved models, or enter a name to create a new model. Select an existing model , Or enter a name to create a new model
3.Choose one or several GPU idxs (separated by comma). Choose one or more GPU Serial number
4.[0] Autobackup every N hour Every time N Hour backup ( 0..24 ?:help ) : Select the automatic backup time
5.[n] Write preview history ( y/n ?:help ) : Record save preview
6.[n] Choose image for the preview history ( y/n ) : Specify the preview
7.[0] Target iteration Target iterate : Target iterations
8.[y] Flip faces randomly ( y/n ?:help ) : Flip the face randomly
9.[2] Batch_size ( ?:help ) : ? Batch size
10.[512] Resolution ( 64-640 ?:help ) : ? Model resolution
11.[wf] Face type Face type ( h/mf/f/wf/head ?:help ) : Select face type
12.[liae-ud] AE architecture ( ?:help ) : ?
'df' keeps more identity-preserved face.
'liae' can fix overly different face shapes.
'-u' increased likeness of the face.
'-d' (experimental) doubling the resolution using the same computation cost.
Examples: df, liae, df-d, df-ud, liae-ud, ...
The architecture of the model
13.[256] AutoEncoder dimensions ( 32-1024 ?:help ) : The width of the bottleneck layer in the middle of the model
14.[64] Encoder dimensions ( 16-256 ?:help ) : The width of the model coding layer
15.[64] Encoder dimensions ( 16-256 ?:help ) : The width of the model decoding layer
16.[n] Masked training ( y/n ?:help ) : ? Only train the mask part
17.[0.0] GAN power ( 0.0 .. 1.0 ?:help ) :GAN The intensity of
6、 ... and 、 Training and debugging parameters (2022.7.18 edition )
face type : WF
random_flip : off
adabelief : on
eyes_mouth_prio : on
ct_mode: lct .
10-30W
learning rate drop:y
10-30W
random warp:n
GAN Training 10-30W
GAN poewer: 0.1
边栏推荐
- Intelligent robots and intelligent systems (Professor Zhengzheng of Dalian University of Technology) -- 4. Autonomous robots
- Kubernetes:(一)基本概念
- Function analysis of e-commerce website development and construction
- MS SQL Server 2019 学习
- MySQL --- 子查询 - 标量子查询
- Perceptron and multilayer neural network, back propagation and computational graph
- A simple mobile terminal todo
- 2022-07-23:给定N件物品,每个物品有重量(w[i])、有价值(v[i]), 只能最多选两件商品,重量不超过bag,返回价值最大能是多少? N <= 10^5, w[i] <= 10^5, v
- Intelligent robots and intelligent systems (Professor Zheng Zheng of Dalian University of Technology) -- 2. Mobile Robot Perception
- Starting from scratch C language intensive Part 3: Functions
猜你喜欢

Using bidirectional linked list to realize stack (c)

Thesis reading: geotransformer

C language advanced part II Pointer

Opencv project practice - credit card recognition

13.Unity2D 横版 可上下左右移动的双向平台(双向行走+可移动+单独判定)+随机平台生成

Kubernetes: (I) basic concepts

Image feature Harris corner detection

Selenium basic knowledge automatic search

JMeter stress test index interpretation

Appium use
随机推荐
Selenium basic knowledge multi window processing
Hcip day 10 notes
[sklearn] RF cross validation out of bag data parameter learning curve grid search
The difference between get and post
hcip第十三天笔记
NFT概念究竟是怎么回事。。全面了解NFT市场、技术和案例
MySQL 啥时候用表锁,啥时候用行锁?
Talk about compilers based on vscode
Install librosa using Tsinghua image
Intelligent robots and intelligent systems (Professor Zhengzheng of Dalian University of Technology) -- 4. Autonomous robots
[Huawei] Huawei machine test question-105
Advanced part of C language VI. file operation
Mutual implementation of stack and queue (c)
mysql update 使用case when根据某一字段的值,更新另一字段的值
Facing Tencent (actual combat) - Test Development - detailed explanation of interns (face experience)
A simple mobile terminal todo
MS SQL Server 2019 learning
13.Unity2D 横版 可上下左右移动的双向平台(双向行走+可移动+单独判定)+随机平台生成
Oauth2==sso three protocols. Oauth2 four modes
[hiflow] Tencent cloud hiflow scene connector realizes intelligent campus information management