当前位置:网站首页>Probability Density Reweight
Probability Density Reweight
2022-07-29 01:18:00 【吊儿郎当的凡】
Probability Density Reweight
Reweight 是通过将采样样本乘以 reweight 权重,从而将样本从原始密度 P 0 P_0 P0 转移至新密度 P 1 P_1 P1 的方法。
当从原始密度采样样本 x x x 时, x x x 的期望为
E x ∼ P 0 [ x ] = ∫ P 0 ( x ) x d x ≈ 1 N ∑ i x i (1) E_{x \sim P_0}[x] = \int P_0(x)x dx \approx \frac{1}{N} \sum_i x_i \tag{1} Ex∼P0[x]=∫P0(x)xdx≈N1i∑xi(1)
其中, x i x_i xi 为采样点, N N N 为采样个数。
我们的目的是将 x ∼ P 0 x \sim P_0 x∼P0 转换为 x ∼ P 1 x \sim P_1 x∼P1,即求得 x x x 在 P 1 P_1 P1 上的期望
E x ∼ P 1 [ x ] ≈ 1 N ∑ i w ( x i ) ⋅ x i w ( x i ) = P 1 ( x i ) / P 0 ( x i ) (2) E_{x \sim P_1}[x] \approx \frac{1}{N} \sum_i w(x_i) · x_i \tag{2} \\ w(x_i) = P_1(x_i) / P_0(x_i) Ex∼P1[x]≈N1i∑w(xi)⋅xiw(xi)=P1(xi)/P0(xi)(2)
其中, w ( x i ) w(x_i) w(xi) 表示 reweight 权重,证明如下所示。
采样时将 x i x_i xi 乘以 w ( x i ) w(x_i) w(xi),根据式 1 可得
1 N ∑ i P 1 ( x i ) P 0 ( x i ) x i ≈ ∫ P 0 ( x ) P 1 ( x ) P 0 ( x ) x d x = ∫ P 1 ( x ) x d x = E x ∼ P 1 [ x ] (3) \frac{1}{N}\sum_i \frac{P_1(x_i)}{P_0(x_i)}x_i \approx \int P_0(x) \frac{P_1(x)}{P_0(x)}x dx = \int P_1(x)xdx = E_{x \sim P_1}[x] \tag{3} N1i∑P0(xi)P1(xi)xi≈∫P0(x)P0(x)P1(x)xdx=∫P1(x)xdx=Ex∼P1[x](3)
要注意,上述所说的概率密度为标准概率密度,即在定义域内积分为 1 。若 P 0 P_0 P0 和 P 1 P_1 P1 为非标准概率密度,需要
E x ∼ P 0 [ x ] = 1 ∫ P 0 ( x ) d x ∫ P 0 ( x ) x d x ≈ 1 N ∑ i x i (4) E_{x \sim P_0}[x] = \frac{1}{\int P_0(x) dx} \int P_0(x)x dx\approx \frac{1}{N} \sum_i x_i \tag{4} Ex∼P0[x]=∫P0(x)dx1∫P0(x)xdx≈N1i∑xi(4)
x x x 在 P 1 P_1 P1 上的期望变为
E x ∼ P 1 [ x ] ≈ ∑ i w ( x i ) ⋅ x i ∑ i w ( x i ) (5) E_{x \sim P_1}[x] \approx \frac{\sum_i w(x_i) · x_i}{\sum_i w(x_i)} \tag{5} Ex∼P1[x]≈∑iw(xi)∑iw(xi)⋅xi(5)
证明如下
1 N ∑ i P 1 ( x i ) P 0 ( x i ) x i ≈ 1 ∫ P 0 ( x ) d x ∫ P 1 ( x ) x d x = ∫ P 1 ( x ) d x ∫ P 0 ( x ) d x E x ∼ P 1 [ x ] ≈ ∑ i w ( x i ) E x ∼ P 1 [ x ] \frac{1}{N}\sum_i \frac{P_1(x_i)}{P_0(x_i)}x_i \approx \frac{1}{\int P_0(x) dx} \int P_1(x)xdx = \frac{\int P_1(x) dx}{\int P_0(x) dx} E_{x \sim P_1}[x] \approx {\sum_i w(x_i)}E_{x \sim P_1}[x] N1i∑P0(xi)P1(xi)xi≈∫P0(x)dx1∫P1(x)xdx=∫P0(x)dx∫P1(x)dxEx∼P1[x]≈i∑w(xi)Ex∼P1[x]
边栏推荐
- 【Golang】- runtime.Goexit()
- How to crawl web pages with playwright?
- Make logic an optimization example in sigma DSP - data distributor
- How companies make business decisions -- with the help of data-driven marketing
- What are the common cyber threats faced by manufacturers and how do they protect themselves
- leetcode/和大于等于target的连续最短子数组
- E-commerce keyword research helps data collection
- [10:00 public class]: application exploration of Kwai gpu/fpga/asic heterogeneous platform
- Mathematical modeling - location of police stations
- (cvpr-2019) selective kernel network
猜你喜欢

Add graceful annotations to latex formula; "Data science" interview questions collection of RI Gai; College Students' computer self-study guide; Personal firewall; Cutting edge materials / papers | sh

Top network security prediction: nearly one-third of countries will regulate blackmail software response within three years

LeetCode 112:路径总和
![[WesternCTF2018]shrine](/img/c1/c099f8930902197590052630281258.png)
[WesternCTF2018]shrine

Mobile communication -- simulation model of error control system based on convolutional code

(arxiv-2018) 重新审视基于视频的 Person ReID 的时间建模

druid. IO custom real-time task scheduling policy

Lxml web page capture the most complete strategy

(arxiv-2018) reexamine the time modeling of person Reid based on video

基于 ICA 与 DL 的语音信号盲分离
随机推荐
Nine days later, we are together to focus on the new development of audio and video and mystery technology
What is browser fingerprint recognition
移动通信——基于卷积码的差错控制系统仿真模型
[7.27] code source - [deletion], [bracket sequence], [number replacement], [game], [painting]
Mobile communication -- simulation model of error control system based on convolutional code
使用本地缓存+全局缓存实现小型系统用户权限管理
Mathematical modeling -- cold proof simulation of low temperature protective clothing with phase change materials
Mysql存储json格式数据
How to find the right agent type? Multi angle analysis for you!
知道创宇上榜CCSIP 2022全景图多个领域
数学建模——派出所选址
数学建模——红酒品质分类
MySQL high performance optimization notes (including 578 pages of notes PDF document), collected
Thirty years of MPEG audio coding
Day01 job
How to crawl web pages with playwright?
Leetcode 113: path sum II
Stonedb invites you to participate in the open source community monthly meeting!
leetcode/和为k的连续子数组个数
Some summaries of ibatis script and provider