当前位置:网站首页>Probability Density Reweight
Probability Density Reweight
2022-07-29 01:18:00 【吊儿郎当的凡】
Probability Density Reweight
Reweight 是通过将采样样本乘以 reweight 权重,从而将样本从原始密度 P 0 P_0 P0 转移至新密度 P 1 P_1 P1 的方法。
当从原始密度采样样本 x x x 时, x x x 的期望为
E x ∼ P 0 [ x ] = ∫ P 0 ( x ) x d x ≈ 1 N ∑ i x i (1) E_{x \sim P_0}[x] = \int P_0(x)x dx \approx \frac{1}{N} \sum_i x_i \tag{1} Ex∼P0[x]=∫P0(x)xdx≈N1i∑xi(1)
其中, x i x_i xi 为采样点, N N N 为采样个数。
我们的目的是将 x ∼ P 0 x \sim P_0 x∼P0 转换为 x ∼ P 1 x \sim P_1 x∼P1,即求得 x x x 在 P 1 P_1 P1 上的期望
E x ∼ P 1 [ x ] ≈ 1 N ∑ i w ( x i ) ⋅ x i w ( x i ) = P 1 ( x i ) / P 0 ( x i ) (2) E_{x \sim P_1}[x] \approx \frac{1}{N} \sum_i w(x_i) · x_i \tag{2} \\ w(x_i) = P_1(x_i) / P_0(x_i) Ex∼P1[x]≈N1i∑w(xi)⋅xiw(xi)=P1(xi)/P0(xi)(2)
其中, w ( x i ) w(x_i) w(xi) 表示 reweight 权重,证明如下所示。
采样时将 x i x_i xi 乘以 w ( x i ) w(x_i) w(xi),根据式 1 可得
1 N ∑ i P 1 ( x i ) P 0 ( x i ) x i ≈ ∫ P 0 ( x ) P 1 ( x ) P 0 ( x ) x d x = ∫ P 1 ( x ) x d x = E x ∼ P 1 [ x ] (3) \frac{1}{N}\sum_i \frac{P_1(x_i)}{P_0(x_i)}x_i \approx \int P_0(x) \frac{P_1(x)}{P_0(x)}x dx = \int P_1(x)xdx = E_{x \sim P_1}[x] \tag{3} N1i∑P0(xi)P1(xi)xi≈∫P0(x)P0(x)P1(x)xdx=∫P1(x)xdx=Ex∼P1[x](3)
要注意,上述所说的概率密度为标准概率密度,即在定义域内积分为 1 。若 P 0 P_0 P0 和 P 1 P_1 P1 为非标准概率密度,需要
E x ∼ P 0 [ x ] = 1 ∫ P 0 ( x ) d x ∫ P 0 ( x ) x d x ≈ 1 N ∑ i x i (4) E_{x \sim P_0}[x] = \frac{1}{\int P_0(x) dx} \int P_0(x)x dx\approx \frac{1}{N} \sum_i x_i \tag{4} Ex∼P0[x]=∫P0(x)dx1∫P0(x)xdx≈N1i∑xi(4)
x x x 在 P 1 P_1 P1 上的期望变为
E x ∼ P 1 [ x ] ≈ ∑ i w ( x i ) ⋅ x i ∑ i w ( x i ) (5) E_{x \sim P_1}[x] \approx \frac{\sum_i w(x_i) · x_i}{\sum_i w(x_i)} \tag{5} Ex∼P1[x]≈∑iw(xi)∑iw(xi)⋅xi(5)
证明如下
1 N ∑ i P 1 ( x i ) P 0 ( x i ) x i ≈ 1 ∫ P 0 ( x ) d x ∫ P 1 ( x ) x d x = ∫ P 1 ( x ) d x ∫ P 0 ( x ) d x E x ∼ P 1 [ x ] ≈ ∑ i w ( x i ) E x ∼ P 1 [ x ] \frac{1}{N}\sum_i \frac{P_1(x_i)}{P_0(x_i)}x_i \approx \frac{1}{\int P_0(x) dx} \int P_1(x)xdx = \frac{\int P_1(x) dx}{\int P_0(x) dx} E_{x \sim P_1}[x] \approx {\sum_i w(x_i)}E_{x \sim P_1}[x] N1i∑P0(xi)P1(xi)xi≈∫P0(x)dx1∫P1(x)xdx=∫P0(x)dx∫P1(x)dxEx∼P1[x]≈i∑w(xi)Ex∼P1[x]
边栏推荐
- Comprehensive analysis of news capture doorway
- What are the common cyber threats faced by manufacturers and how do they protect themselves
- [云原生]微服务架构是什么
- MySQL high performance optimization notes (including 578 pages of notes PDF document), collected
- [golang] synchronization lock mutex
- 基于 ICA 与 DL 的语音信号盲分离
- [7.21-26] code source - [sports festival] [Dan fishing war] [maximum weight division]
- Monadic linear function perceptron: Rosenblatt perceptron
- StoneDB 邀请您参与开源社区月会!
- [the road of Exile - Chapter 7]
猜你喜欢
![[10:00 public class]: application exploration of Kwai gpu/fpga/asic heterogeneous platform](/img/e7/1d06eba0e50eeb91d2d5da7524f4af.png)
[10:00 public class]: application exploration of Kwai gpu/fpga/asic heterogeneous platform

ciscn 2022 华中赛区 misc

Sigma-DSP-OUTPUT

JS timer setinterval clearinterval delayer setTimeout asynchronous animation

为什么 BI 软件都搞不定关联分析
![[UE4] replay game playback for ue4.26](/img/c3/1c7b30797f46dbd323cac4d158600f.png)
[UE4] replay game playback for ue4.26

druid. io kill -9 index_ Realtime traceability task
![[云原生]微服务架构是什么](/img/84/a0ec68646083f3539aa39ad9d98749.png)
[云原生]微服务架构是什么

TDA75610-I2C-模拟功放I2C地址的确定

Mathematical modeling - location of police stations
随机推荐
How companies make business decisions -- with the help of data-driven marketing
数学建模——永冻土层上关于路基热传导问题
Leetcode/ and continuous shortest subarray greater than or equal to target
What is the function of data parsing?
Slow storage scheme
[golang] use select {}
Force deduction brush question (2): sum of three numbers
Monadic linear function perceptron: Rosenblatt perceptron
Day01作业
【流放之路-第三章】
Semiconductor chip industry chain
leetcode/乘积小于K 的连续子数组的个数
StoneDB 为何敢称业界唯一开源的 MySQL 原生 HTAP 数据库?
Tda75610-i2c-determination of I2C address of analog power amplifier
LeetCode 练习——剑指 Offer 45. 把数组排成最小的数
[7.21-26] code source - [good sequence] [social circle] [namonamo]
[netding cup 2020 rosefinch group]nmap
In depth analysis of C language memory alignment
TDA75610-I2C-模拟功放I2C地址的确定
Js DOM2 和 DOM3