当前位置:网站首页>Probability Density Reweight
Probability Density Reweight
2022-07-29 01:18:00 【吊儿郎当的凡】
Probability Density Reweight
Reweight 是通过将采样样本乘以 reweight 权重,从而将样本从原始密度 P 0 P_0 P0 转移至新密度 P 1 P_1 P1 的方法。
当从原始密度采样样本 x x x 时, x x x 的期望为
E x ∼ P 0 [ x ] = ∫ P 0 ( x ) x d x ≈ 1 N ∑ i x i (1) E_{x \sim P_0}[x] = \int P_0(x)x dx \approx \frac{1}{N} \sum_i x_i \tag{1} Ex∼P0[x]=∫P0(x)xdx≈N1i∑xi(1)
其中, x i x_i xi 为采样点, N N N 为采样个数。
我们的目的是将 x ∼ P 0 x \sim P_0 x∼P0 转换为 x ∼ P 1 x \sim P_1 x∼P1,即求得 x x x 在 P 1 P_1 P1 上的期望
E x ∼ P 1 [ x ] ≈ 1 N ∑ i w ( x i ) ⋅ x i w ( x i ) = P 1 ( x i ) / P 0 ( x i ) (2) E_{x \sim P_1}[x] \approx \frac{1}{N} \sum_i w(x_i) · x_i \tag{2} \\ w(x_i) = P_1(x_i) / P_0(x_i) Ex∼P1[x]≈N1i∑w(xi)⋅xiw(xi)=P1(xi)/P0(xi)(2)
其中, w ( x i ) w(x_i) w(xi) 表示 reweight 权重,证明如下所示。
采样时将 x i x_i xi 乘以 w ( x i ) w(x_i) w(xi),根据式 1 可得
1 N ∑ i P 1 ( x i ) P 0 ( x i ) x i ≈ ∫ P 0 ( x ) P 1 ( x ) P 0 ( x ) x d x = ∫ P 1 ( x ) x d x = E x ∼ P 1 [ x ] (3) \frac{1}{N}\sum_i \frac{P_1(x_i)}{P_0(x_i)}x_i \approx \int P_0(x) \frac{P_1(x)}{P_0(x)}x dx = \int P_1(x)xdx = E_{x \sim P_1}[x] \tag{3} N1i∑P0(xi)P1(xi)xi≈∫P0(x)P0(x)P1(x)xdx=∫P1(x)xdx=Ex∼P1[x](3)
要注意,上述所说的概率密度为标准概率密度,即在定义域内积分为 1 。若 P 0 P_0 P0 和 P 1 P_1 P1 为非标准概率密度,需要
E x ∼ P 0 [ x ] = 1 ∫ P 0 ( x ) d x ∫ P 0 ( x ) x d x ≈ 1 N ∑ i x i (4) E_{x \sim P_0}[x] = \frac{1}{\int P_0(x) dx} \int P_0(x)x dx\approx \frac{1}{N} \sum_i x_i \tag{4} Ex∼P0[x]=∫P0(x)dx1∫P0(x)xdx≈N1i∑xi(4)
x x x 在 P 1 P_1 P1 上的期望变为
E x ∼ P 1 [ x ] ≈ ∑ i w ( x i ) ⋅ x i ∑ i w ( x i ) (5) E_{x \sim P_1}[x] \approx \frac{\sum_i w(x_i) · x_i}{\sum_i w(x_i)} \tag{5} Ex∼P1[x]≈∑iw(xi)∑iw(xi)⋅xi(5)
证明如下
1 N ∑ i P 1 ( x i ) P 0 ( x i ) x i ≈ 1 ∫ P 0 ( x ) d x ∫ P 1 ( x ) x d x = ∫ P 1 ( x ) d x ∫ P 0 ( x ) d x E x ∼ P 1 [ x ] ≈ ∑ i w ( x i ) E x ∼ P 1 [ x ] \frac{1}{N}\sum_i \frac{P_1(x_i)}{P_0(x_i)}x_i \approx \frac{1}{\int P_0(x) dx} \int P_1(x)xdx = \frac{\int P_1(x) dx}{\int P_0(x) dx} E_{x \sim P_1}[x] \approx {\sum_i w(x_i)}E_{x \sim P_1}[x] N1i∑P0(xi)P1(xi)xi≈∫P0(x)dx1∫P1(x)xdx=∫P0(x)dx∫P1(x)dxEx∼P1[x]≈i∑w(xi)Ex∼P1[x]
边栏推荐
- LM13丨形态量化-动量周期分析
- 【7.27】代码源 - 【删数】【括号序列】【数字替换】【游戏】【画画】
- 【MySQL】sql给表起别名
- 使用本地缓存+全局缓存实现小型系统用户权限管理
- leetcode/乘积小于K 的连续子数组的个数
- 数学建模——派出所选址
- Comprehensive explanation of "search engine crawl"
- MySQL high performance optimization notes (including 578 pages of notes PDF document), collected
- Promise解决异步
- Blind separation of speech signals based on ICA and DL
猜你喜欢

为什么 BI 软件都搞不定关联分析

Monadic linear function perceptron: Rosenblatt perceptron

覆盖接入2w+交通监测设备,EMQ为深圳市打造交通全要素数字化新引擎

Leetcode 112: path sum

JS dom2 and dom3

Implementation of 10m multifunctional signal generator with FPGA

TDA75610-I2C-模拟功放I2C地址的确定

MPEG音频编码三十年

Stonedb invites you to participate in the open source community monthly meeting!
![[the road of Exile - Chapter 8]](/img/df/a801da27f5064a1729be326c4167fe.png)
[the road of Exile - Chapter 8]
随机推荐
Lm13 morphological quantification momentum period analysis
Make logic an optimization example in sigma DSP - data distributor
FPGA实现10M多功能信号发生器
Mobile communication -- simulation model of error control system based on convolutional code
Lua third-party byte stream serialization and deserialization module --lpack
[golang] network connection net.dial
(arxiv-2018) reexamine the time modeling of person Reid based on video
Large scale web crawling of e-commerce websites (Ultimate Guide)
The solution of reducing the sharpness of pictures after inserting into word documents
给LaTeX公式添加优美的注解;日更『数据科学』面试题集锦;大学生『计算机』自学指南;个人防火墙;前沿资料/论文 | ShowMeAI资讯日报
[the road of Exile - Chapter 7]
What is browser fingerprint recognition
数学建模——红酒品质分类
[the road of Exile - Chapter 6]
Add graceful annotations to latex formula; "Data science" interview questions collection of RI Gai; College Students' computer self-study guide; Personal firewall; Cutting edge materials / papers | sh
12.< tag-动态规划和子序列, 子数组>lt.72. 编辑距离
Mathematical modeling -- red wine quality classification
iVX低代码平台系列详解 -- 概述篇(二)
LM13丨形态量化-动量周期分析
Come on, handwritten RPC S2 serialization exploration