当前位置:网站首页>腾讯-NCNN简介
腾讯-NCNN简介
2022-06-09 22:35:00 【火萤石】
# github: https://github.com/Tencent/ncnn.git
ncnn
ncnn 是一个为手机端极致优化的高性能神经网络前向计算框架。ncnn 从设计之初深刻考虑手机端的部署和使用。无第三方依赖,跨平台,手机端 cpu 的速度快于目前所有已知的开源框架。基于 ncnn,开发者能够将深度学习算法轻松移植到手机端高效执行,开发出人工智能 APP,将 AI 带到你的指尖。ncnn 目前已在腾讯多款应用中使用,如 QQ,Qzone,微信,天天P图等。
Current building status matrix
Support most commonly used CNN network
支持大部分常用的 CNN 网络
- Classical CNN: VGGAlexNetGoogleNet Inception …
- Practical CNN: ResNetDenseNetSENetFPN …
- Light-weight CNN: SqueezeNetMobileNetV1/V2/V3ShuffleNetV1/V2MNasNet …
- Face Detection: MTCNNRetinaFacescrfd …
- Detection: VGG-SSDMobileNet-SSDSqueezeNet-SSDMobileNetV2-SSDLiteMobileNetV3-SSDLite …
- Detection: Faster-RCNNR-FCN …
- Detection: YOLOV2YOLOV3MobileNet-YOLOV3YOLOV4YOLOV5YOLOX …
- Detection: NanoDet
- Segmentation: FCNPSPNetUNetYOLACT …
- Pose Estimation: SimplePose …
HowTo
how to build ncnn library on Linux / Windows / macOS / Raspberry Pi3 / Android / NVIDIA Jetson / iOS / WebAssembly / AllWinner D1 / Loongson 2K1000
- Build for Linux / NVIDIA Jetson / Raspberry Pi3
- Build for Windows x64 using VS2017
- Build for macOS
- Build for ARM Cortex-A family with cross-compiling
- Build for Hisilicon platform with cross-compiling
- Build for Android
- Build for iOS on macOS with xcode
- Build for WebAssembly
- Build for AllWinner D1
- Build for Loongson 2K1000
- Build for termux on android
download prebuild binary package for android and ios
use ncnn with alexnet with detailed steps, recommended for beginners
ncnn 组件使用指北 alexnet 附带详细步骤,新人强烈推荐
use netron for ncnn model visualization
out-of-the-box web model conversion
ncnn param and model file spec
ncnn operation param weight table
how to implement custom layer step by step
FAQ
Features
- Supports convolutional neural networks, supports multiple input and multi-branch structure, can calculate part of the branch
- No third-party library dependencies, does not rely on BLAS / NNPACK or any other computing framework
- Pure C++ implementation, cross-platform, supports android, ios and so on
- ARM NEON assembly level of careful optimization, calculation speed is extremely high
- Sophisticated memory management and data structure design, very low memory footprint
- Supports multi-core parallel computing acceleration, ARM big.LITTLE cpu scheduling optimization
- Supports GPU acceleration via the next-generation low-overhead vulkan api
- Extensible model design, supports 8bit quantization and half-precision floating point storage, can import caffe/pytorch/mxnet/onnx/darknet/keras/tensorflow(mlir) models
- Support direct memory zero copy reference load network model
- Can be registered with custom layer implementation and extended
- Well, it is strong, not afraid of being stuffed with 卷 QvQ
功能概述
- 支持卷积神经网络,支持多输入和多分支结构,可计算部分分支
- 无任何第三方库依赖,不依赖 BLAS/NNPACK 等计算框架
- 纯 C++ 实现,跨平台,支持 android ios 等
- ARM NEON 汇编级良心优化,计算速度极快
- 精细的内存管理和数据结构设计,内存占用极低
- 支持多核并行计算加速,ARM big.LITTLE cpu 调度优化
- 支持基于全新低消耗的 vulkan api GPU 加速
- 可扩展的模型设计,支持 8bit 量化 和半精度浮点存储,可导入 caffe/pytorch/mxnet/onnx/darknet/keras/tensorflow(mlir) 模型
- 支持直接内存零拷贝引用加载网络模型
- 可注册自定义层实现并扩展
- 恩,很强就是了,不怕被塞卷 QvQ
supported platform matrix
- = known work and runs fast with good optimization
- ️ = known work, but speed may not be fast enough
- = shall work, not confirmed
- / = not applied
| Windows | Linux | Android | macOS | iOS | |
|---|---|---|---|---|---|
| intel-cpu | ️ | ️ | ️ | / | |
| intel-gpu | ️ | ️ | / | ||
| amd-cpu | ️ | ️ | ️ | / | |
| amd-gpu | ️ | ️ | / | ||
| nvidia-gpu | ️ | ️ | / | ||
| qcom-cpu | ️ | / | / | ||
| qcom-gpu | ️ | ️ | / | / | |
| arm-cpu | / | / | |||
| arm-gpu | ️ | / | / | ||
| apple-cpu | / | / | / | ️ | |
| apple-gpu | / | / | / | ️ | ️ |
Example project
- https://github.com/nihui/ncnn-android-squeezenet
- https://github.com/nihui/ncnn-android-styletransfer
- https://github.com/nihui/ncnn-android-mobilenetssd
- https://github.com/moli232777144/mtcnn_ncnn
- https://github.com/nihui/ncnn-android-yolov5
- https://github.com/nihui/ncnn-android-scrfd 🤩
边栏推荐
- PCBToolkit初步使用
- EasyRecovery15手机电脑全功能数据恢复软件
- Im instant messaging development: mobile protocol UDP or TCP?
- 什么是流动性质押?什么是农场质押?
- STM32驱动继电器 STM32F103RCT6基于寄存器和库函数驱动IO口
- yum 删除包及依赖
- centos+mysql报:Can‘t connect to local MySQL server through socket ‘/var/lib/mysql/mysql.socket
- 15省份发布2021年平均工资,这些行业有“钱途”
- C language 0 length array (variable array / flexible array) explanation
- mkdir 创建目录命令
猜你喜欢

Another important content - Overseas cash loan product form and risk control measures

Exness: twitter said that it would continue to share data with musk and conduct shareholder voting at the end of July or early August

在线文本字符串批量替换工具

基于JSP实现网上招聘系统

先睹为快!Benji Bananas 第一季奖励活动数据一览!
![[volume guide] mendeley document management tool tutorial](/img/21/06649cfcf4d1c42f5c12dc372b519d.png)
[volume guide] mendeley document management tool tutorial

Easyrecovery15 mobile computer full function data recovery software

MongoDB的使用及CRUD操作

leetcode695. Maximum area of the island (medium)

EasyRecovery15手机电脑全功能数据恢复软件
随机推荐
be all eagerness to see it! Data list of Benji Banas' first quarter reward activities!
Experiment 1: configure static routes on FW to realize interworking
Laravel upload file information acquisition
How to realize efficient im long connection adaptive heartbeat keeping alive mechanism
初识WebSocket
Lua learning notes (4) -- building mobdebug remote development environment
Mina中的区块证明
STM32驱动继电器 STM32F103RCT6基于寄存器和库函数驱动IO口
香橙派H3烧录Uboot,远程加载zImage,dtb,rootfs
Common embedded end streaming media server open source projects!
鲲鹏DevKit工具基础那些事
Still doubting the digital collection? The national team is starting to get in
服务器运维环境安全体系(下篇)
记一次应急排查'新'路历程
C language 0 length array (variable array / flexible array) explanation
Leetcode(力扣)超高频题讲解(一)
Mazhiqiang: research progress and application of speech recognition technology -- RTC dev Meetup
双塔模型:ERNIE-Gram预训练精排Matching
Know how to pay attention to the hot 25K problem, self-study software testing, and how much you need to learn to find a job?
Autre contenu lourd | formes de produits et mesures de contrôle des risques pour les prêts en espèces à l'étranger