当前位置:网站首页>[OC学习笔记]weak的实现原理
[OC学习笔记]weak的实现原理
2022-08-02 07:51:00 【Billy Miracle】
我们在使用weak时,编译器为我们做了什么呢?
NSObject *object = [NSObject alloc];
id __weak objc = object;

可以看到,首先调用了objc_initWeak函数。
objc_initWeak
id
objc_initWeak(id *location, id newObj)
{
if (!newObj) {
*location = nil;
return nil;
}
return storeWeak<DontHaveOld, DoHaveNew, DoCrashIfDeallocating>
(location, (objc_object*)newObj);
}
方法有两个参数location和newObj:
location:__weak指针的地址,存储指针的地址,这样便可以在最后将其指向的对象置为nilnewObj:所引用的对象。即例子中的obj
对于非空的对象,会继续调用storeWeak函数。
storeWeak
// Template parameters.
enum HaveOld {
DontHaveOld = false, DoHaveOld = true };
enum HaveNew {
DontHaveNew = false, DoHaveNew = true };
// Update a weak variable.
// If HaveOld is true, the variable has an existing value
// that needs to be cleaned up. This value might be nil.
// If HaveNew is true, there is a new value that needs to be
// assigned into the variable. This value might be nil.
// If CrashIfDeallocating is true, the process is halted if newObj is
// deallocating or newObj's class does not support weak references.
// If CrashIfDeallocating is false, nil is stored instead.
// 更新弱变量。
// 如果 HaveOld 为 true,则该变量具有需要清理的现有值。此值可能为零。
// 如果 HaveNew 为 true,则需要将新值分配到变量中。此值可能为零。
// 如果 CrashIfDeallocating 为 true,则在 newObj 正在解除分配或 newObj 的类不支持弱引用时,该过程将停止。
// 如果 CrashIfDeallocation 为 false,则改为存储 nil。
enum CrashIfDeallocating {
DontCrashIfDeallocating = false, DoCrashIfDeallocating = true
};
template <HaveOld haveOld, HaveNew haveNew,
enum CrashIfDeallocating crashIfDeallocating>
static id
storeWeak(id *location, objc_object *newObj)
{
ASSERT(haveOld || haveNew);
if (!haveNew) ASSERT(newObj == nil);
Class previouslyInitializedClass = nil;
id oldObj;
SideTable *oldTable;
SideTable *newTable;
// Acquire locks for old and new values.
// Order by lock address to prevent lock ordering problems.
// Retry if the old value changes underneath us.
retry:
if (haveOld) {
// 如果weak ptr之前弱引用过一个obj,则将这个obj所对应的SideTable取出,赋值给oldTable
oldObj = *location;
oldTable = &SideTables()[oldObj];
} else {
// 如果weak ptr之前没有弱引用过一个obj,则oldTable = nil
oldTable = nil;
}
if (haveNew) {
// 如果weak ptr要weak引用一个新的obj,则将该obj对应的SideTable取出,赋值给newTable
newTable = &SideTables()[newObj];
} else {
// 如果weak ptr不需要引用一个新obj,则newTable = nil
newTable = nil;
}
// 加锁操作,防止多线程中竞争冲突
SideTable::lockTwo<haveOld, haveNew>(oldTable, newTable);
// location 应该与 oldObj 保持一致,如果不同,说明当前的 location 已经处理过 oldObj 可是又被其他线程所修改,重试
if (haveOld && *location != oldObj) {
SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
goto retry;
}
// Prevent a deadlock between the weak reference machinery
// and the +initialize machinery by ensuring that no
// weakly-referenced object has an un-+initialized isa.
// 通过确保没有弱引用对象具有未+initialize的 isa,防止弱引用机制和 +initialize 机制之间的死锁。
if (haveNew && newObj) {
Class cls = newObj->getIsa();
if (cls != previouslyInitializedClass &&
!((objc_class *)cls)->isInitialized())
{
// 如果cls还没有初始化,先初始化,再尝试设置weak
SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
class_initialize(cls, (id)newObj);
// If this class is finished with +initialize then we're good.
// If this class is still running +initialize on this thread
// (i.e. +initialize called storeWeak on an instance of itself)
// then we may proceed but it will appear initializing and
// not yet initialized to the check above.
// Instead set previouslyInitializedClass to recognize it on retry.
// 如果这个类以+initialize完成,那么就没事。
// 如果这个类仍然在这个线程上运行+initialize(即+initialize在自身的实例上调用storeWeak),
// 那么我们可以继续,但它将显示为初始化并且尚未初始化为上面的检查。
// 相反,将先前初始化类设置为在重试时识别它。
previouslyInitializedClass = cls;// 这里记录一下previouslyInitializedClass, 防止改if分支再次进入
goto retry;// 重新获取一遍newObj,这时的newObj应该已经初始化过了
}
}
// Clean up old value, if any.
// 清理旧值(如果有)。
if (haveOld) {
// 如果weak_ptr之前弱引用过别的对象oldObj,
// 则调用weak_unregister_no_lock,
// 在oldObj的weak_entry_t中移除该weak_ptr地址
weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
}
// Assign new value, if any.
// 分配新值(如果有)。
if (haveNew) {
// 如果weak_ptr需要弱引用新的对象newObj
// (1) 调用weak_register_no_lock方法,将weak ptr的地址记录到newObj对应的weak_entry_t中
newObj = (objc_object *)
weak_register_no_lock(&newTable->weak_table, (id)newObj, location,
crashIfDeallocating ? CrashIfDeallocating : ReturnNilIfDeallocating);
// weak_register_no_lock returns nil if weak store should be rejected
// (2) 更新newObj的isa的weakly_referenced bit标志位
// Set is-weakly-referenced bit in refcount table.
if (!_objc_isTaggedPointerOrNil(newObj)) {
newObj->setWeaklyReferenced_nolock();
}
// (3)*location 赋值,也就是将weak ptr直接指向了newObj。可以看到,这里并没有将newObj的引用计数+1
// Do not set *location anywhere else. That would introduce a race.
*location = (id)newObj;
// 将weak ptr指向object
}
else {
// No new value. The storage is not changed.
}
// 解锁,其他线程可以访问oldTable, newTable了
SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
// This must be called without the locks held, as it can invoke
// arbitrary code. In particular, even if _setWeaklyReferenced
// is not implemented, resolveInstanceMethod: may be, and may
// call back into the weak reference machinery.
// 这必须在不持有锁的情况下调用,因为它可以调用任意代码。
// 特别是,即使_setWeaklyReferenced没有实现,
// resolveInstanceMethod:也可能是,并且可能回调到弱参考机制中。
callSetWeaklyReferenced((id)newObj);
return (id)newObj;// 返回newObj,此时的newObj与刚传入时相比,weakly-referenced bit位置1
}
storeWeak 方法的实现代码非常长,但是并不难以理解。下面我们来分析下。
storeWeak方法实际上是接收了5个参数,分别是haveOld、haveNew和crashIfDeallocating,这三个参数都是以模板的方式传入的,是三个bool类型的参数。 分别表示weak指针之前是否指向了一个弱引用、weak指针是否需要指向一个新的引用、若被弱引用的对象正在dealloc,此时再弱引用该对象是否应该crash。- 该方法维护了
oldTable和newTable分别表示旧的引用弱表和新的弱引用表,它们都是SideTable的hash表。 - 如果
weak指针之前指向了一个弱引用,则会调用weak_unregister_no_lock方法将旧的weak指针地址移除。 - 如果
weak指针需要指向一个新的引用,则会调用weak_register_no_lock方法将新的weak指针地址添加到弱引用表中。 - 调用
setWeaklyReferenced_nolock方法修改weak新引用的对象的bit标志位。
这个方法中的重点也就是weak_unregister_no_lock 和weak_register_no_lock 这两个方法。而这两个方法都是操作的SideTable这样一个结构的变量,那么继续探究前需要了解下SideTable。
SideTable
struct SideTable {
spinlock_t slock;
RefcountMap refcnts;
weak_table_t weak_table;
SideTable() {
memset(&weak_table, 0, sizeof(weak_table));
}
~SideTable() {
_objc_fatal("Do not delete SideTable.");
}
void lock() {
slock.lock(); }
void unlock() {
slock.unlock(); }
void forceReset() {
slock.forceReset(); }
// Address-ordered lock discipline for a pair of side tables.
template<HaveOld, HaveNew>
static void lockTwo(SideTable *lock1, SideTable *lock2);
template<HaveOld, HaveNew>
static void unlockTwo(SideTable *lock1, SideTable *lock2);
};
SideTable有三个成员:
spinlock_t slock: 自旋锁,用于上锁/解锁SideTable。RefcountMap refcnts:用来存储OC对象的引用计数的 hash表(仅在未开启isa优化或在isa优化情况下isa_t的引用计数溢出时才会用到)。weak_table_t weak_table: 存储对象弱引用指针的hash表。是OC中weak功能实现的核心数据结构。
weak_table_t
struct weak_table_t {
weak_entry_t *weak_entries;
size_t num_entries;
uintptr_t mask;
uintptr_t max_hash_displacement;
};
weak_entries: hash数组,用来存储弱引用对象的相关信息weak_entry_tnum_entries: hash数组中的元素个数mask:hash数组长度-1,会参与hash计算。(注意,这里是hash数组的长度,而不是元素个数。比如,数组长度可能是64,而元素个数仅存了2个)max_hash_displacement:可能会发生的hash冲突的最大次数,用于判断是否出现了逻辑错误(hash表中的冲突次数绝不会超过改值)
weak_table_t是一个典型的hash结构。weak_entries是一个动态数组,用来存储weak_entry_t类型的元素,这些元素实际上就是OC对象的弱引用信息。
weak_entry_t
struct weak_entry_t {
DisguisedPtr<objc_object> referent;// 被弱引用的对象
union {
// 引用该对象的对象列表,联合。
// 引用个数小于4,用inline_referrers数组。 用个数大于4,用动态数组weak_referrer_t *referrers
struct {
weak_referrer_t *referrers;
uintptr_t out_of_line_ness : 2;
uintptr_t num_refs : PTR_MINUS_2;
uintptr_t mask;
uintptr_t max_hash_displacement;
};
struct {
// out_of_line_ness field is low bits of inline_referrers[1]
weak_referrer_t inline_referrers[WEAK_INLINE_COUNT];
};
};
bool out_of_line() {
return (out_of_line_ness == REFERRERS_OUT_OF_LINE);
}
weak_entry_t& operator=(const weak_entry_t& other) {
memcpy(this, &other, sizeof(other));
return *this;
}
weak_entry_t(objc_object *newReferent, objc_object **newReferrer)
: referent(newReferent)// 构造方法,里面初始化了静态数组
{
inline_referrers[0] = newReferrer;
for (int i = 1; i < WEAK_INLINE_COUNT; i++) {
inline_referrers[i] = nil;
}
}
};
在weak_entry_t 的结构定义中有联合体,在联合体的内部有定长数组inline_referrers[WEAK_INLINE_COUNT]和动态数组weak_referrer_t *referrers两种方式来存储弱引用对象的指针地址。通过out_of_line()这样一个函数方法来判断采用哪种存储方式。当弱引用该对象的指针数目小于等于WEAK_INLINE_COUNT时,使用定长数组。当超过WEAK_INLINE_COUNT时,会将定长数组中的元素转移到动态数组中,并之后都是用动态数组存储。
弱引用表的结构是一个hash结构的表,Key是所指对象的地址,Value是weak指针的地址(这个地址的值是所指对象的地址)数组。那么接下来看看这个弱引用表是怎么维护这些数据的。
weak_register_no_lock方法添加弱引用
/** * Registers a new (object, weak pointer) pair. Creates a new weak * object entry if it does not exist. * * @param weak_table The global weak table. * @param referent The object pointed to by the weak reference. * @param referrer The weak pointer address. */
id
weak_register_no_lock(weak_table_t *weak_table, id referent_id,
id *referrer_id, WeakRegisterDeallocatingOptions deallocatingOptions)
{
objc_object *referent = (objc_object *)referent_id;
objc_object **referrer = (objc_object **)referrer_id;
// 如果referent为nil 或 referent 采用了TaggedPointer计数方式,直接返回,不做任何操作
if (_objc_isTaggedPointerOrNil(referent)) return referent_id;
// ensure that the referenced object is viable
// 确保被引用的对象可用(没有在析构,同时应该支持weak引用)
if (deallocatingOptions == ReturnNilIfDeallocating ||
deallocatingOptions == CrashIfDeallocating) {
bool deallocating;
if (!referent->ISA()->hasCustomRR()) {
deallocating = referent->rootIsDeallocating();
}
else {
// Use lookUpImpOrForward so we can avoid the assert in
// class_getInstanceMethod, since we intentionally make this
// callout with the lock held.
auto allowsWeakReference = (BOOL(*)(objc_object *, SEL))
lookUpImpOrForwardTryCache((id)referent, @selector(allowsWeakReference),
referent->getIsa());
if ((IMP)allowsWeakReference == _objc_msgForward) {
return nil;
}
deallocating =
! (*allowsWeakReference)(referent, @selector(allowsWeakReference));
}
// 正在析构的对象,不能够被弱引用
if (deallocating) {
if (deallocatingOptions == CrashIfDeallocating) {
_objc_fatal("Cannot form weak reference to instance (%p) of "
"class %s. It is possible that this object was "
"over-released, or is in the process of deallocation.",
(void*)referent, object_getClassName((id)referent));
} else {
// ReturnNilIfDeallocating
return nil;
}
}
}
// now remember it and where it is being stored
// 在 weak_table中找到referent对应的weak_entry,并将referrer加入到weak_entry中
weak_entry_t *entry;
if ((entry = weak_entry_for_referent(weak_table, referent))) {
// 如果能找到weak_entry,则将referrer插入到weak_entry中
append_referrer(entry, referrer);// 将referrer插入到weak_entry_t的引用数组中
}
else {
// 如果找不到,就新建一个
weak_entry_t new_entry(referent, referrer);
weak_grow_maybe(weak_table);
weak_entry_insert(weak_table, &new_entry);
}
// Do not set *referrer. objc_storeWeak() requires that the
// value not change.
return referent_id;
}
这个方法需要传入四个参数:
weak_table:weak_table_t结构类型的全局的弱引用表。referent_id:weak指针。*referrer_id:weak指针地址。deallocatingOptions:若果被弱引用的对象正在析构,此时再弱引用该对象是否应该crash或者置为nil。
下面简单总结下代码的流程:
- 如果
referent为nil或采用了TaggedPointer计数方式,直接返回,不做任何操作。 - 如果对象不能被
weak引用,直接返回nil。 - 如果对象正在析构,则抛出异常或者返回
nil。 - 如果对象没有在析构且可以被
weak引用,则调用weak_entry_for_referent方法根据弱引用对象的地址从弱引用表中找到对应的weak_entry,如果能够找到则调用append_referrer方法向其中插入weak指针地址。否则新建一个weak_entry,再插入。
weak_entry_for_referent取元素
/** * Return the weak reference table entry for the given referent. * If there is no entry for referent, return NULL. * Performs a lookup. * * @param weak_table * @param referent The object. Must not be nil. * * @return The table of weak referrers to this object. */
static weak_entry_t *
weak_entry_for_referent(weak_table_t *weak_table, objc_object *referent)
{
ASSERT(referent);
weak_entry_t *weak_entries = weak_table->weak_entries;
if (!weak_entries) return nil;
size_t begin = hash_pointer(referent) & weak_table->mask;
// 这里通过 & weak_table->mask的位操作,来确保index不会越界
size_t index = begin;
size_t hash_displacement = 0;
while (weak_table->weak_entries[index].referent != referent) {
index = (index+1) & weak_table->mask;
if (index == begin) bad_weak_table(weak_table->weak_entries); // 触发bad weak table crash
hash_displacement++;
if (hash_displacement > weak_table->max_hash_displacement) {
// 当hash冲突超过了可能的max hash 冲突时,说明元素没有在hash表中,返回nil
return nil;
}
}
return &weak_table->weak_entries[index];
}
append_referrer添加元素
/** * Add the given referrer to set of weak pointers in this entry. * Does not perform duplicate checking (b/c weak pointers are never * added to a set twice). * * @param entry The entry holding the set of weak pointers. * @param new_referrer The new weak pointer to be added. */
static void append_referrer(weak_entry_t *entry, objc_object **new_referrer)
{
if (! entry->out_of_line()) {
// 如果weak_entry 尚未使用动态数组,走这里
// Try to insert inline.
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
if (entry->inline_referrers[i] == nil) {
entry->inline_referrers[i] = new_referrer;
return;
}
}
// Couldn't insert inline. Allocate out of line.
// 如果inline_referrers的位置已经存满了,则要转型为referrers,做动态数组。
weak_referrer_t *new_referrers = (weak_referrer_t *)
calloc(WEAK_INLINE_COUNT, sizeof(weak_referrer_t));
// This constructed table is invalid, but grow_refs_and_insert
// will fix it and rehash it.
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
new_referrers[i] = entry->inline_referrers[i];
}
entry->referrers = new_referrers;
entry->num_refs = WEAK_INLINE_COUNT;
entry->out_of_line_ness = REFERRERS_OUT_OF_LINE;
entry->mask = WEAK_INLINE_COUNT-1;
entry->max_hash_displacement = 0;
}
// 对于动态数组的附加处理:
ASSERT(entry->out_of_line());// 断言: 此时一定使用的动态数组
if (entry->num_refs >= TABLE_SIZE(entry) * 3/4) {
// 如果动态数组中元素个数大于或等于数组位置总空间的3/4,则扩展数组空间为当前长度的一倍
return grow_refs_and_insert(entry, new_referrer);// 扩容,并插入
}
// 如果不需要扩容,直接插入到weak_entry中
// 注意,weak_entry是一个哈希表,key:w_hash_pointer(new_referrer) value: new_referrer
// 这里weak_entry_t 的hash算法和 weak_table_t的hash算法是一样的,同时扩容/减容的算法也是一样的
size_t begin = w_hash_pointer(new_referrer) & (entry->mask);
// '& (entry->mask)' 确保了 begin的位置只能大于或等于 数组的长度
size_t index = begin; // 初始的hash index
size_t hash_displacement = 0; // 用于记录hash冲突的次数,也就是hash再位移的次数
while (entry->referrers[index] != nil) {
hash_displacement++;
// index + 1, 移到下一个位置,再试一次能否插入。(这里要考虑到entry->mask取值,一定是:0x111, 0x1111, 0x11111, ... ,因为数组每次都是*2增长,即8, 16, 32,对应动态数组空间长度-1的mask,也就是前面的取值。)
index = (index+1) & entry->mask;
// index == begin 意味着数组绕了一圈都没有找到合适位置,这时候一定是出了什么问题。
if (index == begin) bad_weak_table(entry);
}
if (hash_displacement > entry->max_hash_displacement) {
// 记录最大的hash冲突次数, max_hash_displacement意味着: 我们尝试至多max_hash_displacement次,肯定能够找到object对应的hash位置
entry->max_hash_displacement = hash_displacement;
}
// 将ref存入hash数组,同时,更新元素个数num_refs
weak_referrer_t &ref = entry->referrers[index];
ref = new_referrer;
entry->num_refs++;
}
首先确定是使用定长数组还是动态数组,如果是使用定长数组,则直接将weak指针地址添加到数组即可,如果定长数组已经用尽,则需要将定长数组中的元素转存到动态数组中。
weak_unregister_no_lock移除引用
如果weak指针之前指向了一个弱引用,则会调用weak_unregister_no_lock方法将旧的weak指针地址移除。
/** * Unregister an already-registered weak reference. * This is used when referrer's storage is about to go away, but referent * isn't dead yet. (Otherwise, zeroing referrer later would be a * bad memory access.) * Does nothing if referent/referrer is not a currently active weak reference. * Does not zero referrer. * * FIXME currently requires old referent value to be passed in (lame) * FIXME unregistration should be automatic if referrer is collected * * @param weak_table The global weak table. * @param referent The object. * @param referrer The weak reference. */
void
weak_unregister_no_lock(weak_table_t *weak_table, id referent_id,
id *referrer_id)
{
objc_object *referent = (objc_object *)referent_id;
objc_object **referrer = (objc_object **)referrer_id;
weak_entry_t *entry;
if (!referent) return;
if ((entry = weak_entry_for_referent(weak_table, referent))) {
// 查找到referent所对应的weak_entry_t
remove_referrer(entry, referrer);// 在referent所对应的weak_entry_t的hash数组中,移除referrer
bool empty = true;
// 移除元素之后, 要检查一下weak_entry_t的hash数组是否已经空了
if (entry->out_of_line() && entry->num_refs != 0) {
empty = false;
}
else {
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
if (entry->inline_referrers[i]) {
empty = false;
break;
}
}
}
if (empty) {
// 如果weak_entry_t的hash数组已经空了,则需要将weak_entry_t从weak_table中移除
weak_entry_remove(weak_table, entry);
}
}
// Do not set *referrer = nil. objc_storeWeak() requires that the
// value not change.
}
- 首先,它会在
weak_table中找出referent对应的weak_entry_t - 在
weak_entry_t中移除referrer - 移除元素后,判断此时
weak_entry_t中是否还有元素 (empty==true?) - 如果此时
weak_entry_t已经没有元素了,则需要将weak_entry_t从weak_table中移除
到这里为止就是对于一个对象做weak引用时底层做的事情,用weak引用对象后引用计数并不会加1,当对象释放时,所有weak引用它的指针又是如何自动设置为nil的呢?
dealloc
当对象的引用计数为0时,底层会调用_objc_rootDealloc方法对对象进行释放,而在_objc_rootDealloc方法里面会调用rootDealloc方法。如下是rootDealloc方法的代码实现:
inline void
objc_object::rootDealloc()
{
if (isTaggedPointer()) return; // fixme necessary?
if (fastpath(isa.nonpointer &&
!isa.weakly_referenced &&
!isa.has_assoc &&
!isa.has_cxx_dtor &&
!isa.has_sidetable_rc))
{
assert(!sidetable_present());
free(this);
}
else {
object_dispose((id)this);
}
}
- 首先判断对象是否是Tagged Pointer,如果是则直接返回。
- 如果对象是采用了优化的
isa计数方式,且同时满足对象没有被weak引用!isa.weakly_referenced、没有关联对象!isa.has_assoc、没有自定义的C++析构方法!isa.has_cxx_dtor、没有用到SideTable来引用计数!isa.has_sidetable_rc则直接快速释放。 - 如果不能满足2中的条件,则会调用
object_dispose方法。
object_dispose
id
object_dispose(id obj)
{
if (!obj) return nil;
objc_destructInstance(obj);
free(obj);
return nil;
}
object_dispose 方法很简单,主要是内部调用了objc_destructInstance方法
/* objc_destructInstance 在不释放内存的情况下销毁实例。 调用C++析构函数。 调用 ARC ivar 清理。 删除关联引用。 返回“obj”。如果 “obj” 为 nil,则不执行任何操作。 */
void *objc_destructInstance(id obj)
{
if (obj) {
// Read all of the flags at once for performance.
bool cxx = obj->hasCxxDtor();
bool assoc = obj->hasAssociatedObjects();
// This order is important.
if (cxx) object_cxxDestruct(obj);
if (assoc) _object_remove_assocations(obj, /*deallocating*/true);
obj->clearDeallocating();
}
return obj;
}
上面这一段代码很清晰,如果有自定义的C++析构方法,则调用C++析构函数。如果有关联对象,则移除关联对象并将其自身从Association Manager的map中移除。调用clearDeallocating 方法清除对象的相关引用。
clearDeallocating
inline void
objc_object::clearDeallocating()
{
if (slowpath(!isa.nonpointer)) {
// Slow path for raw pointer isa.
sidetable_clearDeallocating();
}
else if (slowpath(isa.weakly_referenced || isa.has_sidetable_rc)) {
// Slow path for non-pointer isa with weak refs and/or side table data.
clearDeallocating_slow();
}
assert(!sidetable_present());
}
clearDeallocating中有两个分支,先判断对象是否采用了优化isa引用计数,如果没有的话则需要清理对象存储在SideTable中的引用计数数据。如果对象采用了优化isa引用计数,则判断是否有使用SideTable的辅助引用计数(isa.has_sidetable_rc)或者有weak引用(isa.weakly_referenced),符合这两种情况中一种的,调用clearDeallocating_slow 方法。
clearDeallocating_slow
// Slow path of clearDeallocating()
// for objects with nonpointer isa
// that were ever weakly referenced
// or whose retain count ever overflowed to the side table.
NEVER_INLINE void
objc_object::clearDeallocating_slow()
{
ASSERT(isa.nonpointer && (isa.weakly_referenced || isa.has_sidetable_rc));
SideTable& table = SideTables()[this];// 在全局的SideTables中,以this指针为key,找到对应的SideTable
table.lock();
if (isa.weakly_referenced) {
// 如果obj被弱引用
weak_clear_no_lock(&table.weak_table, (id)this);// 在SideTable的weak_table中对this进行清理工作
}
if (isa.has_sidetable_rc) {
// 如果采用了SideTable做引用计数
table.refcnts.erase(this);// 在SideTable的引用计数中移除this
}
table.unlock();
}
这里调用了weak_clear_no_lock来做weak_table的清理工作。
/** * Called by dealloc; nils out all weak pointers that point to the * provided object so that they can no longer be used. * * @param weak_table * @param referent The object being deallocated. */
void
weak_clear_no_lock(weak_table_t *weak_table, id referent_id)
{
objc_object *referent = (objc_object *)referent_id;
weak_entry_t *entry = weak_entry_for_referent(weak_table, referent);
if (entry == nil) {
/// XXX shouldn't happen, but does with mismatched CF/objc
//printf("XXX no entry for clear deallocating %p\n", referent);
return;
}
// zero out references
weak_referrer_t *referrers;
size_t count;
// 找出weak引用referent的weak 指针地址数组以及数组长度
if (entry->out_of_line()) {
referrers = entry->referrers;
count = TABLE_SIZE(entry);
}
else {
referrers = entry->inline_referrers;
count = WEAK_INLINE_COUNT;
}
for (size_t i = 0; i < count; ++i) {
objc_object **referrer = referrers[i];// 取出每个weak ptr的地址
if (referrer) {
if (*referrer == referent) {
// ️如果weak ptr确实weak引用了referent,则将weak ptr设置为nil,这也就是为什么weak 指针会自动设置为nil的原因
*referrer = nil;
}
else if (*referrer) {
// 如果所存储的weak ptr没有weak 引用referent,这可能是由于runtime代码的逻辑错误引起的,报错
_objc_inform("__weak variable at %p holds %p instead of %p. "
"This is probably incorrect use of "
"objc_storeWeak() and objc_loadWeak(). "
"Break on objc_weak_error to debug.\n",
referrer, (void*)*referrer, (void*)referent);
objc_weak_error();
}
}
}
weak_entry_remove(weak_table, entry);// 由于referent要被释放了,因此referent的weak_entry_t也要移除出weak_table
}
总结
- weak的原理在于底层维护了一张weak_table_t结构的hash表,key是所指对象的地址,value是weak指针的地址数组。
- weak 关键字的作用是弱引用,所引用对象的计数器不会加1,并在引用对象被释放的时候自动被设置为 nil。
- 对象释放时,调用clearDeallocating函数根据对象地址获取所有weak指针地址的数组,然后遍历这个数组把其中的数据设为nil,最后把这个entry从weak表中删除,最后清理对象的记录。
边栏推荐
- 类型“DropDownList”的控件“ContentPlaceHolder1_ddlDepartment”必须放在具有 runat=server 的窗体标记内。
- MySQL压缩包方式安装,傻瓜式教学
- 18、优化网站性能
- [ansible]playbook结合项目解释执行步骤
- A young man with strong blood and energy actually became a housekeeper. How did he successfully turn around and change careers?
- 如何将项目部署到服务器上(全套教程)
- 爬虫 视频爬取工具you-get
- Stop mental exhaustion Daily sharing
- 数据中心的网络安全操作规范
- cas: 139504-50-0 Maytansine DM1|Mertansine|
猜你喜欢
随机推荐
17、生成长图,并上传至服务器
商业智能平台BI 商业智能分析平台 如何选择合适的商业智能平台BI
@RequestBody使用
Appium swipe problem
Control 'ContentPlaceHolder1_ddlDepartment' of type 'DropDownList' must be placed inside a form tag with runat=server.
mysql如何从某一行检索到最后
小说里的编程 【连载之二十五】元宇宙里月亮弯弯
A young man with strong blood and energy actually became a housekeeper. How did he successfully turn around and change careers?
Mysql各个大版本之间的区别
HCIP9_BGP增加实验
2022-7-31 12点 程序爱生活 恒指底背离中,有1-2周反弹希望
redis高阶使用之Redisson分布式锁源码解析
WebGPU 导入[2] - 核心概念与重要机制解读
HCIP 第八天
uniapp 禁止默认返回事件
如何开启mysql慢查询日志?
原型模式
@FeignClient configuration参数配置
HCIP第七天
暂未找到具体原因但解决了的bug

![52. [Bool type input any non-0 value is not 1 version reason]](/img/73/c4e0048c504e0df073a6d07cfec3ab.png)







