当前位置:网站首页>schur completement
schur completement
2022-07-30 07:49:00 【sunset stained ramp】
目的:Study the derivation of some formulas,schur Complement formulas are often encountered in matrix multiplication,So write down the derivation formula to deepen your understanding
舒尔补(schur completement)定义
in linear algebra or matrix theory,Schur complement Written in matrix block form,表示如下:
M = [ A B C D ] M = \begin{bmatrix} A&B\\C&D \end{bmatrix} M=[ACBD]
其中 A , B , C , D A, B, C, D A,B,C,D分别表示 p × p , p × q , q × p , q × q p × p, p × q, q × p, q × q p×p,p×q,q×p,q×q 维度的矩阵, p , q p,q p,qare two non-negative integers.因此可以看到 M M M为 ( p + q ) × ( p + q ) (p+q) \times (p+q) (p+q)×(p+q)的方正.
如果 D D D是可逆(invertible),then the matrix block Schur completement 被定义为:
M / D : = A − B D − 1 C M/D:=A-BD^{-1}C M/D:=A−BD−1C
如果 A A A是可逆(invertible),then the matrix block Schur completement 被定义为:
M / A : = D − C A − 1 B M/A:=D-CA^{-1}B M/A:=D−CA−1B
A B C D ABCD ABCD: 它都是顺时针方向.
作用
1)将 M M M The matrix becomes upper triangular or lower triangular, respectively.
M = [ A B C D ] = [ I p B D − 1 0 I q ] [ A − B D − 1 C 0 0 D ] [ I p 0 D − 1 C I q ] M=\begin{bmatrix} A&B\\C&D \end{bmatrix}=\begin{bmatrix} I_p&BD^{-1}\\0&I_q \end{bmatrix} \space \begin{bmatrix} A-BD^{-1}C&0\\0&D \end{bmatrix} \space \begin{bmatrix} I_p&0\\D^{-1}C&I_q \end{bmatrix} M=[ACBD]=[Ip0BD−1Iq] [A−BD−1C00D] [IpD−1C0Iq]
证明一:
If you want to get the diagonal matrix,First use Gaussian elimination,消去 C C C,Obtained using the formula(It is multiplied by the right,Indicates row elimination,这样 B D BD BD不变)
[ A B C D ] [ I p 0 X I q ] = [ A ∗ B 0 D ] \begin{bmatrix} A&B\\C&D \end{bmatrix} \begin{bmatrix} I_p&0\\X&I_q \end{bmatrix}= \begin{bmatrix} A^*&B\\0&D \end{bmatrix} [ACBD][IpX0Iq]=[A∗0BD]
The obtained equation is as follows
C + D X = 0 = > X = − D − 1 C C+DX=0=>X=-D^{-1}C C+DX=0=>X=−D−1C
将 X X XBring in the formula for the matrix above A ∗ = A + B X A^*=A+BX A∗=A+BX得到:
[ A B C D ] [ I p 0 − D − 1 C I q ] = [ A − B D − 1 C B 0 D ] \begin{bmatrix} A&B\\C&D \end{bmatrix} \begin{bmatrix} I_p&0\\-D^{-1}C&I_q \end{bmatrix}= \begin{bmatrix} A-BD^{-1}C&B\\0&D \end{bmatrix} [ACBD][Ip−D−1C0Iq]=[A−BD−1C0BD]
Now use the elimination method to eliminate B B B,Use row elimination.In the formula it is left multiplication.
[ I p X 0 I q ] [ A − B D − 1 C B 0 D ] = [ A − B D − 1 C 0 0 D ] \begin{bmatrix} I_p&X\\0&I_q \end{bmatrix} \begin{bmatrix} A-BD^{-1}C&B\\0&D \end{bmatrix}=\begin{bmatrix} A-BD^{-1}C&0\\0&D \end{bmatrix} [Ip0XIq][A−BD−1C0BD]=[A−BD−1C00D]
The obtained equation is as follows:
B + D X = 0 = > X = − D − 1 B B+DX=0=>X=-D^{-1}B B+DX=0=>X=−D−1B
将 X X Xinto the equation to get
[ I p − D − 1 B 0 I q ] [ A − B D − 1 C B 0 D ] = [ A − B D − 1 C 0 0 D ] \begin{bmatrix} I_p&-D^{-1}B\\0&I_q \end{bmatrix} \begin{bmatrix} A-BD^{-1}C&B\\0&D \end{bmatrix}=\begin{bmatrix} A-BD^{-1}C&0\\0&D \end{bmatrix} [Ip0−D−1BIq][A−BD−1C0BD]=[A−BD−1C00D]
Summarizing the two formulas can be obtained:
M = [ A B C D ] = [ I p B D − 1 0 I q ] [ A − B D − 1 C 0 0 D ] [ I p 0 D − 1 C I q ] M=\begin{bmatrix} A&B\\C&D \end{bmatrix}=\begin{bmatrix} I_p&BD^{-1}\\0&I_q \end{bmatrix} \space \begin{bmatrix} A-BD^{-1}C&0\\0&D \end{bmatrix} \space \begin{bmatrix} I_p&0\\D^{-1}C&I_q \end{bmatrix} M=[ACBD]=[Ip0BD−1Iq] [A−BD−1C00D] [IpD−1C0Iq]
证明二:
Use the algebra of linear systems to find
[ A B C D ] [ X p X q ] = [ Y p Y q ] \begin{bmatrix} A&B\\C&D \end{bmatrix}\begin{bmatrix} X_p\\X_q \end{bmatrix}=\begin{bmatrix} Y_p\\Y_q \end{bmatrix} [ACBD][XpXq]=[YpYq]
因为 [ Y p Y q ] = ( [ A B C D ] ) − 1 [ X p X q ] \begin{bmatrix} Y_p\\Y_q \end{bmatrix}=(\begin{bmatrix} A&B\\C&D \end{bmatrix})^{-1}\begin{bmatrix} X_p\\X_q \end{bmatrix} [YpYq]=([ACBD])−1[XpXq]
因为 D D D可逆,得到下面公式
X q = Y q − D − 1 C X p X_q=Y_q-D^{-1}CX_p Xq=Yq−D−1CXp
Bring in A X p + B X q = Y p AX_p+BX_q=Y_p AXp+BXq=Yp得到 X p X_p Xp
X p = ( A − B D − 1 C ) − 1 ( Y p − B Y q ) X_p=(A-BD^{-1}C)^{-1}(Y_p-BY_q) Xp=(A−BD−1C)−1(Yp−BYq)
在将 X p X_p Xp带入 X q = Y q − D − 1 C X p X_q=Y_q-D^{-1}CX_p Xq=Yq−D−1CXp:
X q = Y q − D − 1 C ( A − B D − 1 C ) − 1 ( Y p − B Y q ) X_q=Y_q-D^{-1}C(A-BD^{-1}C)^{-1}(Y_p-BY_q) Xq=Yq−D−1C(A−BD−1C)−1(Yp−BYq)
After converting the above into vector form,in converting to a matrix.
2)Quickly find matrices M M M的逆.
M − 1 = [ A B C D ] − 1 = ( [ I p B D − 1 0 I q ] [ A − B D − 1 C 0 0 D ] [ I p 0 D − 1 C I q ] ) − 1 = [ I p 0 − D − 1 C I q ] [ ( A − B D − 1 C ) − 1 0 0 D − 1 ] [ I p − B D − 1 0 I q ] = [ ( A − B D − 1 C ) − 1 − ( A − B D − 1 C ) − 1 B D − 1 − D − 1 C ( A − B D − 1 C ) − 1 D − 1 C ( A − B D − 1 C ) − 1 B D − 1 + D − 1 ] = [ ( M / D ) − 1 − ( M / D ) − 1 B D − 1 − D − 1 C ( M / D ) − 1 D − 1 + D − 1 C ( M / D ) − 1 B D − 1 ] M^{-1} =\begin{bmatrix} A&B\\C&D \end{bmatrix} ^{-1}= (\begin{bmatrix} I_p&BD^{-1}\\0&I_q \end{bmatrix} \space \begin{bmatrix} A-BD^{-1}C&0\\0&D \end{bmatrix} \space \begin{bmatrix} I_p&0\\D^{-1}C&I_q \end{bmatrix})^{-1} \\ \\ \\ =\begin{bmatrix} I_p&0\\-D^{-1}C&I_q \end{bmatrix}\space \begin{bmatrix} (A-BD^{-1}C)^{-1}&0\\0&D^{-1} \end{bmatrix} \space \begin{bmatrix} I_p&-BD^{-1}\\0&I_q \end{bmatrix} \space \\ \\ \\ =\begin{bmatrix} (A-BD^{-1}C)^{-1}& -(A-BD^{-1}C)^{-1}BD^{-1}\\-D^{-1}C (A-BD^{-1}C)^{-1}&D^{-1}C(A-BD^{-1}C)^{-1}BD^{-1} + D^{-1} \end{bmatrix} \\ \\ \\ =\begin{bmatrix} (M/D)^{-1}&-(M/D)^{-1}BD^{-1}\\-D^{-1}C(M/D)^{-1}&D^{-1} + D^{-1}C(M/D)^{-1}BD^{-1} \end{bmatrix} M−1=[ACBD]−1=([Ip0BD−1Iq] [A−BD−1C00D] [IpD−1C0Iq])−1=[Ip−D−1C0Iq] [(A−BD−1C)−100D−1] [Ip0−BD−1Iq] =[(A−BD−1C)−1−D−1C(A−BD−1C)−1−(A−BD−1C)−1BD−1D−1C(A−BD−1C)−1BD−1+D−1]=[(M/D)−1−D−1C(M/D)−1−(M/D)−1BD−1D−1+D−1C(M/D)−1BD−1]
Known from the formula,when finding the inverse of a matrix,可以通过先获取 ( M / D ) (M/D) (M/D),Then get its inverse.
边栏推荐
- iptables命令
- 多线程基础(多线程内存,安全,通信,线程池和阻塞队列)
- 从安装到编译: 10分钟教你在本地使用和开发GraphScope
- GCD的定时器
- 舒尔补(schur completement)
- GAIA-IR:GraphScope 上的并行化图查询引擎
- Application of graph computing in network security analysis
- About memcache kernel, so one of the most popular
- libgrape-lite on GPUs: GPU helps accelerate graph analysis tasks
- 使用 Helm 部署 GraphScope
猜你喜欢
随机推荐
黑盒测试的概念及测试方法
prometheus监控nacos
libgrape-lite: 提供 GraphScope 的图分析能力
Test Development Engineer Growth Diary 003 - Interface Automation Framework Construction
RAID磁盘阵列
Event Delivery and Responder Chains
Redis下载与安装
掌握JESD204B(二)–AD6676的调试
MySQL主从复制配置搭建,一步到位
向量的导数运算和向量叉乘以及点乘的导数运算
(GGG)JWT
mysql常用命令以及mysqldump备份
02-Use of Cycript
Test Development Engineer Growth Diary 015 - Top 20 Test Interview Questions
MongoDB - query
【Untitled】
04-packing and unpacking
Proftpd配置文件
DHCP principle and configuration
Test Development Engineer Growth Diary 010 - CI/CD/CT in Jenkins (Continuous Integration Build/Continuous Delivery/Continuous Testing)