当前位置:网站首页>schur completement
schur completement
2022-07-30 07:49:00 【sunset stained ramp】
目的:Study the derivation of some formulas,schur Complement formulas are often encountered in matrix multiplication,So write down the derivation formula to deepen your understanding
舒尔补(schur completement)定义
in linear algebra or matrix theory,Schur complement Written in matrix block form,表示如下:
M = [ A B C D ] M = \begin{bmatrix} A&B\\C&D \end{bmatrix} M=[ACBD]
其中 A , B , C , D A, B, C, D A,B,C,D分别表示 p × p , p × q , q × p , q × q p × p, p × q, q × p, q × q p×p,p×q,q×p,q×q 维度的矩阵, p , q p,q p,qare two non-negative integers.因此可以看到 M M M为 ( p + q ) × ( p + q ) (p+q) \times (p+q) (p+q)×(p+q)的方正.
如果 D D D是可逆(invertible),then the matrix block Schur completement 被定义为:
M / D : = A − B D − 1 C M/D:=A-BD^{-1}C M/D:=A−BD−1C
如果 A A A是可逆(invertible),then the matrix block Schur completement 被定义为:
M / A : = D − C A − 1 B M/A:=D-CA^{-1}B M/A:=D−CA−1B
A B C D ABCD ABCD: 它都是顺时针方向.
作用
1)将 M M M The matrix becomes upper triangular or lower triangular, respectively.
M = [ A B C D ] = [ I p B D − 1 0 I q ] [ A − B D − 1 C 0 0 D ] [ I p 0 D − 1 C I q ] M=\begin{bmatrix} A&B\\C&D \end{bmatrix}=\begin{bmatrix} I_p&BD^{-1}\\0&I_q \end{bmatrix} \space \begin{bmatrix} A-BD^{-1}C&0\\0&D \end{bmatrix} \space \begin{bmatrix} I_p&0\\D^{-1}C&I_q \end{bmatrix} M=[ACBD]=[Ip0BD−1Iq] [A−BD−1C00D] [IpD−1C0Iq]
证明一:
If you want to get the diagonal matrix,First use Gaussian elimination,消去 C C C,Obtained using the formula(It is multiplied by the right,Indicates row elimination,这样 B D BD BD不变)
[ A B C D ] [ I p 0 X I q ] = [ A ∗ B 0 D ] \begin{bmatrix} A&B\\C&D \end{bmatrix} \begin{bmatrix} I_p&0\\X&I_q \end{bmatrix}= \begin{bmatrix} A^*&B\\0&D \end{bmatrix} [ACBD][IpX0Iq]=[A∗0BD]
The obtained equation is as follows
C + D X = 0 = > X = − D − 1 C C+DX=0=>X=-D^{-1}C C+DX=0=>X=−D−1C
将 X X XBring in the formula for the matrix above A ∗ = A + B X A^*=A+BX A∗=A+BX得到:
[ A B C D ] [ I p 0 − D − 1 C I q ] = [ A − B D − 1 C B 0 D ] \begin{bmatrix} A&B\\C&D \end{bmatrix} \begin{bmatrix} I_p&0\\-D^{-1}C&I_q \end{bmatrix}= \begin{bmatrix} A-BD^{-1}C&B\\0&D \end{bmatrix} [ACBD][Ip−D−1C0Iq]=[A−BD−1C0BD]
Now use the elimination method to eliminate B B B,Use row elimination.In the formula it is left multiplication.
[ I p X 0 I q ] [ A − B D − 1 C B 0 D ] = [ A − B D − 1 C 0 0 D ] \begin{bmatrix} I_p&X\\0&I_q \end{bmatrix} \begin{bmatrix} A-BD^{-1}C&B\\0&D \end{bmatrix}=\begin{bmatrix} A-BD^{-1}C&0\\0&D \end{bmatrix} [Ip0XIq][A−BD−1C0BD]=[A−BD−1C00D]
The obtained equation is as follows:
B + D X = 0 = > X = − D − 1 B B+DX=0=>X=-D^{-1}B B+DX=0=>X=−D−1B
将 X X Xinto the equation to get
[ I p − D − 1 B 0 I q ] [ A − B D − 1 C B 0 D ] = [ A − B D − 1 C 0 0 D ] \begin{bmatrix} I_p&-D^{-1}B\\0&I_q \end{bmatrix} \begin{bmatrix} A-BD^{-1}C&B\\0&D \end{bmatrix}=\begin{bmatrix} A-BD^{-1}C&0\\0&D \end{bmatrix} [Ip0−D−1BIq][A−BD−1C0BD]=[A−BD−1C00D]
Summarizing the two formulas can be obtained:
M = [ A B C D ] = [ I p B D − 1 0 I q ] [ A − B D − 1 C 0 0 D ] [ I p 0 D − 1 C I q ] M=\begin{bmatrix} A&B\\C&D \end{bmatrix}=\begin{bmatrix} I_p&BD^{-1}\\0&I_q \end{bmatrix} \space \begin{bmatrix} A-BD^{-1}C&0\\0&D \end{bmatrix} \space \begin{bmatrix} I_p&0\\D^{-1}C&I_q \end{bmatrix} M=[ACBD]=[Ip0BD−1Iq] [A−BD−1C00D] [IpD−1C0Iq]
证明二:
Use the algebra of linear systems to find
[ A B C D ] [ X p X q ] = [ Y p Y q ] \begin{bmatrix} A&B\\C&D \end{bmatrix}\begin{bmatrix} X_p\\X_q \end{bmatrix}=\begin{bmatrix} Y_p\\Y_q \end{bmatrix} [ACBD][XpXq]=[YpYq]
因为 [ Y p Y q ] = ( [ A B C D ] ) − 1 [ X p X q ] \begin{bmatrix} Y_p\\Y_q \end{bmatrix}=(\begin{bmatrix} A&B\\C&D \end{bmatrix})^{-1}\begin{bmatrix} X_p\\X_q \end{bmatrix} [YpYq]=([ACBD])−1[XpXq]
因为 D D D可逆,得到下面公式
X q = Y q − D − 1 C X p X_q=Y_q-D^{-1}CX_p Xq=Yq−D−1CXp
Bring in A X p + B X q = Y p AX_p+BX_q=Y_p AXp+BXq=Yp得到 X p X_p Xp
X p = ( A − B D − 1 C ) − 1 ( Y p − B Y q ) X_p=(A-BD^{-1}C)^{-1}(Y_p-BY_q) Xp=(A−BD−1C)−1(Yp−BYq)
在将 X p X_p Xp带入 X q = Y q − D − 1 C X p X_q=Y_q-D^{-1}CX_p Xq=Yq−D−1CXp:
X q = Y q − D − 1 C ( A − B D − 1 C ) − 1 ( Y p − B Y q ) X_q=Y_q-D^{-1}C(A-BD^{-1}C)^{-1}(Y_p-BY_q) Xq=Yq−D−1C(A−BD−1C)−1(Yp−BYq)
After converting the above into vector form,in converting to a matrix.
2)Quickly find matrices M M M的逆.
M − 1 = [ A B C D ] − 1 = ( [ I p B D − 1 0 I q ] [ A − B D − 1 C 0 0 D ] [ I p 0 D − 1 C I q ] ) − 1 = [ I p 0 − D − 1 C I q ] [ ( A − B D − 1 C ) − 1 0 0 D − 1 ] [ I p − B D − 1 0 I q ] = [ ( A − B D − 1 C ) − 1 − ( A − B D − 1 C ) − 1 B D − 1 − D − 1 C ( A − B D − 1 C ) − 1 D − 1 C ( A − B D − 1 C ) − 1 B D − 1 + D − 1 ] = [ ( M / D ) − 1 − ( M / D ) − 1 B D − 1 − D − 1 C ( M / D ) − 1 D − 1 + D − 1 C ( M / D ) − 1 B D − 1 ] M^{-1} =\begin{bmatrix} A&B\\C&D \end{bmatrix} ^{-1}= (\begin{bmatrix} I_p&BD^{-1}\\0&I_q \end{bmatrix} \space \begin{bmatrix} A-BD^{-1}C&0\\0&D \end{bmatrix} \space \begin{bmatrix} I_p&0\\D^{-1}C&I_q \end{bmatrix})^{-1} \\ \\ \\ =\begin{bmatrix} I_p&0\\-D^{-1}C&I_q \end{bmatrix}\space \begin{bmatrix} (A-BD^{-1}C)^{-1}&0\\0&D^{-1} \end{bmatrix} \space \begin{bmatrix} I_p&-BD^{-1}\\0&I_q \end{bmatrix} \space \\ \\ \\ =\begin{bmatrix} (A-BD^{-1}C)^{-1}& -(A-BD^{-1}C)^{-1}BD^{-1}\\-D^{-1}C (A-BD^{-1}C)^{-1}&D^{-1}C(A-BD^{-1}C)^{-1}BD^{-1} + D^{-1} \end{bmatrix} \\ \\ \\ =\begin{bmatrix} (M/D)^{-1}&-(M/D)^{-1}BD^{-1}\\-D^{-1}C(M/D)^{-1}&D^{-1} + D^{-1}C(M/D)^{-1}BD^{-1} \end{bmatrix} M−1=[ACBD]−1=([Ip0BD−1Iq] [A−BD−1C00D] [IpD−1C0Iq])−1=[Ip−D−1C0Iq] [(A−BD−1C)−100D−1] [Ip0−BD−1Iq] =[(A−BD−1C)−1−D−1C(A−BD−1C)−1−(A−BD−1C)−1BD−1D−1C(A−BD−1C)−1BD−1+D−1]=[(M/D)−1−D−1C(M/D)−1−(M/D)−1BD−1D−1+D−1C(M/D)−1BD−1]
Known from the formula,when finding the inverse of a matrix,可以通过先获取 ( M / D ) (M/D) (M/D),Then get its inverse.
边栏推荐
猜你喜欢

Redis6的数据类型

The Force Plan Microservices | Centralized Configuration Center Config Asymmetric Encryption and Security Management

Mastering JESD204B (1) – Debugging of AD6676

02-Use of Cycript

prometheus监控nacos

A New Paradigm for Distributed Deep Learning Programming: Global Tensor

prometheus-federation-tls加密

网络协议01 - 基础概念

Test and Development Engineer Growth Diary 009 - Environment Pai Pai Station: Development Environment, Test Environment, Production Environment, UAT Environment, Simulation Environment

CTO说不建议我使用SELECT * ,这是为什么?
随机推荐
prometheus-federation-tls加密
远程连接服务器的MySql
网络协议01 - 基础概念
测试开发工程师成长日记018 - 测试面试必备题记录(持续更新)
Swagger使用方式,告别postman
Bull: remove common characters
GNNLab: A Novel GNN System Based on Spatial Sharing Ideas
libgrape-lite: 提供 GraphScope 的图分析能力
MYSQL-GROUP BY 用法 全网最精,通熟易懂的话解释
Proftpd配置文件
Linux(centos7)下安装MySQL
(GGG)JWT
Alamofire source code analysis - POST request
From installation to compilation: 10 minutes to teach you to use and develop GraphScope locally
网络协议04 - 物理层和数据链路层
计算矩阵的逆源码(使用伴随矩阵,3×3的矩阵)
瀑布流(自定义布局实现)
Graph Computing 101: Types, Languages, and Systems of Graph Computing
掌握JESD204B(二)–AD6676的调试
MongoDB - Introduction, Data Types, Basic Statements