当前位置:网站首页>[elm classification] classification of UCI data sets based on nuclear limit learning machine and limit learning machine, with matlab code
[elm classification] classification of UCI data sets based on nuclear limit learning machine and limit learning machine, with matlab code
2022-07-27 23:26:00 【Matlab scientific research studio】
1 Content introduction
Extreme learning machine (extreme learning machine,ELM) As a new machine learning method , It has become a hot research direction . ELM Randomly determine the input weights and hidden layer node offsets of the single hidden layer network , The output weight can be obtained by simple calculation , It not only accelerates the learning speed , And it has good generalization ability . Kernel function ELM Introduce kernel function into limit learning machine theory , The least square optimization solution can be obtained , It's solved
ELM Algorithm random initialization problem , It has good robustness to model learning parameters , With more stable 、 Better generalization performance .



2 Simulation code
clcclear allDataSetName = 'waveform'; % With matlab The name of the dataset stored in the formatTrainSamplesPartio = 0.5; % Proportion of training samples of each typeC = 100; % Regularization factorDataSet = load(DataSetName, '-mat'); % Load file into programDataSet = getfield(DataSet, DataSetName);% Get the data in the fileKindIdx = DataSet(:,1); % Get category number , Data number one 1 List as category numberKindCount = length(unique(KindIdx)); % Total number of categoriesSortedDataSet = sortrows(DataSet, 1); % Arrange data by class label , Rearrange data from small to large according to class label , Facilitate random data extraction laterclear DataSetEachKindCount = zeros(1,KindCount); % Number of data of each typefor i=1:KindCountEachKindCount(i) = sum(sum( i == SortedDataSet(:,1))); % The first i Number of class dataendTrainData = [];TestData = [];% Put all kinds of training data and test data into a matrixTrainTemp = [];TestTemp = [];for i=1:KindCountif i==1TempIdx1(1:TrainSamCountEachKind(i),1) = i; % Mark the training data class labelTempIdx2(1:size(TestDataEachKind{i},1),1) = i; % Mark the test data class labelTrainData = [TempIdx1 TrainDataEachKind{1,i}]; % The first column is the class labelTestData = [TempIdx2 TestDataEachKind{1,i}];TempIdx1 = []; % Clear the class label here , Otherwise, wrong class labels may be generated , Because the number of each type of data may be differentTempIdx2 = [];TrainTemp = TrainData;TestTemp = TestData;elseTempIdx1(1:TrainSamCountEachKind(i),1) = i;TempIdx2(1:size(TestDataEachKind{i},1),1) = i;TrainData = [TrainTemp;[TempIdx1 TrainDataEachKind{1,i}]];TestData = [TestTemp;[TempIdx2 TestDataEachKind{1,i}]];TrainTemp = TrainData;TestTemp = TestData;TempIdx1 = [];TempIdx2 = [];endendclear TrainTemp TestTemp TrainDataEachKind TestDataEachKind% The statistical results[label_index_actual, label_index_expected, TrainingAccuracy, TestingAccuracy] = elm(TrainData, TestData, 1, KindCount, 'sig');% Format and output relevant information , It can be modified according to your own needsfprintf('Run Information:\n')fprintf('+-----------------------------------------------+\n')fprintf('|KindIdx | EachKindCount | EachTrainKindCount |\n');fprintf('+-----------------------------------------------+\n')Msgemat='| %2d |%9d |%11d |\n';for i=1:KindCountfprintf(Msgemat, i, EachKindCount(i), TrainSamCountEachKind(i));fprintf('+-----------------------------------------------+\n')endfprintf('+------------------------------------------------------+\n')figureplot(label_index_actual,'rs')hold onplot( label_index_expected,'bo')xlabel(' sample ')legend(' True value ',' Test value ')title([' Test accuracy =',num2str(TestingAccuracy)])
3 Running results


4 reference
[1] Wang Li , LAN Zhi , Yang Rong , etc. . Based on kernel limit learning machine and wavelet packet transform EEG classification method [J]. Beijing Biomedical Engineering , 2018, 37(5):8.
[2] Wang Li et al . " Based on kernel limit learning machine and wavelet packet transform EEG classification method .".
About bloggers : Good at intelligent optimization algorithms 、 Neural networks predict 、 signal processing 、 Cellular automata 、 The image processing 、 Path planning 、 UAV and other fields Matlab Simulation , relevant matlab Code problems can be exchanged by private letter .
Some theories cite network literature , If there is infringement, contact the blogger to delete .
边栏推荐
- 如何快捷地查看H.265视频播放器EasyPlayer的API属性及其使用方法?
- 2022 / 4 / 11 exam summary
- Convnext:a convnet for the 2020s - model Brief
- Analysis of cloud native application security organization structure
- VIM editor tutorial
- Interviewer: I can't carry a backpack at all. Are you going by yourself or I'll give you a lift?
- Pyqt5 rapid development and practice 4.10 window drawing controls
- Gstore weekly gstore source code analysis (V): log tracking of security mechanism
- Complete Guide to IOT architecture
- Brief explanation of noi 2018
猜你喜欢

Parameter transmission of components

Implicit indicators for evaluating the advantages and disadvantages of automated testing

Fluorescence imaging of cle19 polypeptide in cells preparation of fluorescence quenching quantum dots of bovine serum albumin

Library management system based on SSM framework

毕设-基于SSM高校后勤管理系统

On data management of data warehouse

回Mixlab三天,“创造力团队”治好了我的精神内耗

Blender plug-in of 2022

Complete Guide to IOT architecture

Excel VBA finds out the maximum and minimum values of a column of time, and repeatedly pastes multiple values according to the actual situation
随机推荐
8000 word explanation of OBSA principle and application practice
iMeta | 国际标准刊号ISSN印刷版正式确认,双ISSN申请完成
[noi2018] bubble sort (combination + Cartland number +dp+ tree array)
简单实用的数据可视化案例
Network development socket and UDP, TCP protocols
Application skills of AWS dynamodb
What is the b+tree index of MySQL? How does the cluster index grow?
Summary of exam on May 17, 2022
【信号去噪】基于卡尔曼滤波实现信号去噪附matlab代码
我年薪100万,全身上下没有超过100块的衣服:存钱,是最顶级的自律
Dry goods semantic web, Web3.0, Web3, metauniverse, these concepts are still confused? (medium)
51 MCU internal peripherals: real time clock (SPI)
Basic SQL general syntax and classification
Take byte offer in four rounds and answer the interview questions
Introduction to the paper | distributed graph simulation
Blood spitting finishing nanny level series tutorial - playing Fiddler bag capturing tutorial (5) - detailed explanation of fiddler monitoring panel
Memoirs of three years in junior high school
Microsoft Office 2019 download installation activation tutorial (full process diagram)
Preliminary understanding of Panda3D audio and advanced interactive components
2022 / 4 / 11 exam summary