This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

Related tags

Deep LearningCORA
Overview

CORA

This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval. Preptint. 2021.

cora_image

In this paper, we introduce CORA, a single, unified multilingual open QA model for many languages.
CORA consists of two main components: mDPR and mGEN.
mDPR retrieves documents from multilingual document collections and mGEN generates the answer in the target languages directly instead of using any external machine translation or language-specific retrieval module.
Our experimental results show state-of-the-art results across two multilingual open QA dataset: XOR QA and MKQA.

Contents

  1. Quick Run on XOR QA
  2. Overview
  3. Data
  4. Installation
  5. Training
  6. Evaluation
  7. Citations and Contact

Quick Run on XOR QA

We provide quick_start_xorqa.sh, with which you can easily set up and run evaluation on the XOR QA full dev set.

The script will

  1. download our trained mDPR, mGEN and encoded Wikipedia embeddings,
  2. run the whole pipeline on the evaluation set, and
  3. calculate the QA scores.

You can download the prediction results from here.

Overview

To run CORA, you first need to preprocess Wikipedia using the codes in wikipedia_preprocess.
Then you train mDPR and mGEN.
Once you finish training those components, please run evaluations, and then evaluate the performance using eval_scripts.

Please see the details of each components in each directory.

  • mDPR: codes for training and evaluating our mDPR.
  • mGEN: codes for training and evaluating our mGEN.
  • wikipedia_preprocess: codes for preprocessing Wikipedias.
  • eval_scripts: scripts to evaluate the performance.

Data

Training data

We will upload the final training data for mDPR. Please stay tuned!

Evaluation data

We evaluate our models performance on XOR QA and MKQA.

  • XOR QA Please download the XOR QA (full) data by running the command below.
mkdir data
cd data
wget https://nlp.cs.washington.edu/xorqa/XORQA_site/data/xor_dev_full_v1_1.jsonl
wget https://nlp.cs.washington.edu/xorqa/XORQA_site/data/xor_test_full_q_only_v1_1.jsonl
cd ..
  • MKQA Please download the original MKQA data from the original repository.
wget https://github.com/apple/ml-mkqa/raw/master/dataset/mkqa.jsonl.gz
gunzip mkqa.jsonl.gz

Before evaluating on MKQA, you need to preprocess the MKQA data to convert them into the same format as XOR QA. Please follow the instructions at eval_scripts/README.md.

Installation

Dependencies

  • Python 3
  • PyTorch (currently tested on version 1.7.0)
  • Transformers (version 4.2.1; unlikely to work with a different version)

Trained models

You can download trained models by running the commands below:

mkdir models
wget https://nlp.cs.washington.edu/xorqa/cora/models/all_w100.tsv
wget https://nlp.cs.washington.edu/xorqa/cora/models/mGEN_model.zip
wget https://nlp.cs.washington.edu/xorqa/cora/models/mDPR_biencoder_best.cpt
unzip mGEN_model.zip
mkdir embeddings
cd embeddings
for i in 0 1 2 3 4 5 6 7;
do 
  wget https://nlp.cs.washington.edu/xorqa/cora/models/wikipedia_split/wiki_emb_en_$i 
done
for i in 0 1 2 3 4 5 6 7;
do 
  wget https://nlp.cs.washington.edu/xorqa/cora/models/wikipedia_split/wiki_emb_others_$i  
done
cd ../..

Training

CORA is trained with our iterative training process, where each iteration proceeds over two states: parameter updates and cross-lingual data expansion.

  1. Train mDPR with the current training data. For the first iteration, the training data is the gold paragraph data from Natural Questions and TyDi-XOR QA.
  2. Retrieve top documents using trained mDPR
  3. Train mGEN with retrieved data
  4. Run mGEN on each passages from mDPR and synthetic data retrieval to label the new training data.
  5. Go back to step 1.

overview_training

See the details of each training step in mDPR/README.md and mGEN/README.md.

Evaluation

  1. Run mDPR on the input data
python dense_retriever.py \
    --model_file ../models/mDPR_biencoder_best.cpt \
    --ctx_file ../models/all_w100.tsv \
    --qa_file ../data/xor_dev_full_v1_1.jsonl \
    --encoded_ctx_file "../models/embeddings/wiki_emb_*" \
    --out_file xor_dev_dpr_retrieval_results.json \
    --n-docs 20 --validation_workers 1 --batch_size 256 --add_lang
  1. Convert the retrieved results into mGEN input format
cd mGEN
python3 convert_dpr_retrieval_results_to_seq2seq.py \
    --dev_fp ../mDPR/xor_dev_dpr_retrieval_results.json \
    --output_dir xorqa_dev_final_retriever_results \
    --top_n 15 \
    --add_lang \
    --xor_engspan_train data/xor_train_retrieve_eng_span.jsonl \
    --xor_full_train data/xor_train_full.jsonl \
    --xor_full_dev data/xor_dev_full_v1_1.jsonl
  1. Run mGEN
CUDA_VISIBLE_DEVICES=0 python eval_mgen.py \
    --model_name_or_path \
    --evaluation_set xorqa_dev_final_retriever_results/val.source \
    --gold_data_path xorqa_dev_final_retriever_results/gold_para_qa_data_dev.tsv \
    --predictions_path xor_dev_final_results.txt \
    --gold_data_mode qa \
    --model_type mt5 \
    --max_length 20 \
    --eval_batch_size 4
cd ..
  1. Run the XOR QA full evaluation script
cd eval_scripts
python eval_xor_full.py --data_file ../data/xor_dev_full_v1_1.jsonl --pred_file ../mGEN/xor_dev_final_results.txt --txt_file

Baselines

In our paper, we have tested several baselines such as Translate-test or multilingual baselines. The codes for machine translations or BM 25-based retrievers are at baselines. To run the baselines, you may need to download code and mdoels from the XOR QA repository. Those codes are implemented by Velocity :)

Citations and Contact

If you find this codebase is useful or use in your work, please cite our paper.

@article{
asai2021cora,
title={One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval},
author={Akari Asai and Xinyan Yu and Jungo Kasai and Hannaneh Hajishirzi},
journal={Arxiv Preprint},
year={2021}
}

Please contact Akari Asai (@AkariAsai on Twitter, akari[at]cs.washington.edu) for questions and suggestions.

Owner
Akari Asai
PhD student at @uwnlp . NLP & ML.
Akari Asai
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
[TPDS'21] COSCO: Container Orchestration using Co-Simulation and Gradient Based Optimization for Fog Computing Environments

COSCO Framework COSCO is an AI based coupled-simulation and container orchestration framework for integrated Edge, Fog and Cloud Computing Environment

imperial-qore 39 Dec 25, 2022
SpiroMask: Measuring Lung Function Using Consumer-Grade Masks

SpiroMask: Measuring Lung Function Using Consumer-Grade Masks Anonymised repository for paper submitted for peer review at ACM HEALTH (October 2021).

0 May 10, 2022
Implementation of Google Brain's WaveGrad high-fidelity vocoder

WaveGrad Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generatio

Ivan Vovk 363 Dec 27, 2022
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

It's a powerful version of linebot

CTPS-FINAL Linbot-sever.py 主程式 Algorithm.py 推薦演算法,媒合餐廳端資料與顧客端資料 config.ini 儲存 channel-access-token、channel-secret 資料 Preface 生活在成大將近4年,我們每天的午餐時間看著形形色色

1 Oct 17, 2022
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems This repository includes the dataset, experiments results, and code for the paper: Few-Shot B

Andrea Madotto 103 Dec 28, 2022
A Convolutional Transformer for Keyword Spotting

☢️ Audiomer ☢️ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
Adaout is a practical and flexible regularization method with high generalization and interpretability

Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi

lambett 1 Feb 09, 2022
Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Debabrata Mahapatra 40 Dec 24, 2022
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022