A pytest plugin, that enables you to test your code that relies on a running PostgreSQL Database

Overview

https://raw.githubusercontent.com/ClearcodeHQ/pytest-postgresql/master/logo.png

pytest-postgresql

Latest PyPI version Wheel Status Supported Python Versions License

What is this?

This is a pytest plugin, that enables you to test your code that relies on a running PostgreSQL Database. It allows you to specify fixtures for PostgreSQL process and client.

How to use

Warning

Tested on PostgreSQL versions >= 10. See tests for more details.

Install with:

pip install pytest-postgresql

You will also need to install psycopg. See its installation instructions.

Plugin contains three fixtures:

  • postgresql - it's a client fixture that has functional scope. After each test it ends all leftover connections, and drops test database from PostgreSQL ensuring repeatability. This fixture returns already connected psycopg connection.
  • postgresql_proc - session scoped fixture, that starts PostgreSQL instance at it's first use and stops at the end of the tests.
  • postgresql_noproc - a noprocess fixture, that's connecting to already running postgresql instance. For example on dockerized test environments, or CI providing postgresql services

Simply include one of these fixtures into your tests fixture list.

You can also create additional postgresql client and process fixtures if you'd need to:

from pytest_postgresql import factories

postgresql_my_proc = factories.postgresql_proc(
    port=None, unixsocketdir='/var/run')
postgresql_my = factories.postgresql('postgresql_my_proc')

Note

Each PostgreSQL process fixture can be configured in a different way than the others through the fixture factory arguments.

Sample test

def test_example_postgres(postgresql):
    """Check main postgresql fixture."""
    cur = postgresql.cursor()
    cur.execute("CREATE TABLE test (id serial PRIMARY KEY, num integer, data varchar);")
    postgresql.commit()
    cur.close()

If you want the database fixture to be automatically populated with your schema there are two ways:

  1. client fixture specific
  2. process fixture specific

Both are accepting same set of possible loaders:

  • sql file path
  • loading function import path (string)
  • actual loading function

That function will receive host, port, user, dbname and password kwargs and will have to perform connection to the database inside. However, you'll be able to run SQL files or even trigger programmatically database migrations you have.

Client specific loads the database each test

postgresql_my_with_schema = factories.postgresql(
    'postgresql_my_proc',
    load=["schemafile.sql", "otherschema.sql", "import.path.to.function", "import.path.to:otherfunction", load_this]
)

Warning

This way, the database will still be dropped each time.

The process fixture performs the load once per test session, and loads the data into the template database. Client fixture then creates test database out of the template database each test, which significantly speeds up the tests.

postgresql_my_proc = factories.postgresql_proc(
    load=["schemafile.sql", "otherschema.sql", "import.path.to.function", "import.path.to:otherfunction", load_this]
)
pytest --postgresql-populate-template=path.to.loading_function --postgresql-populate-template=path.to.other:loading_function --postgresql-populate-template=path/to/file.sql

The loading_function from example will receive , and have to commit that. Connecting to already existing postgresql database --------------------------------------------------

Some projects are using already running postgresql servers (ie on docker instances). In order to connect to them, one would be using the postgresql_noproc fixture.

postgresql_external = factories.postgresql('postgresql_noproc')

By default the postgresql_noproc fixture would connect to postgresql instance using 5432 port. Standard configuration options apply to it.

These are the configuration options that are working on all levels with the postgresql_noproc fixture:

Configuration

You can define your settings in three ways, it's fixture factory argument, command line option and pytest.ini configuration option. You can pick which you prefer, but remember that these settings are handled in the following order:

  • Fixture factory argument
  • Command line option
  • Configuration option in your pytest.ini file
Configuration options
PostgreSQL option Fixture factory argument Command line option pytest.ini option Noop process fixture Default
Path to executable executable --postgresql-exec postgresql_exec
/usr/lib/postgresql/13/bin/pg_ctl
host host --postgresql-host postgresql_host yes 127.0.0.1
port port --postgresql-port postgresql_port yes (5432) random
postgresql user user --postgresql-user postgresql_user yes postgres
password password --postgresql-password postgresql_password yes  
Starting parameters (extra pg_ctl arguments) startparams --postgresql-startparams postgresql_startparams
-w
Postgres exe extra arguments (passed via pg_ctl's -o argument) postgres_options --postgresql-postgres-options postgresql_postgres_options
 
Log filename's prefix logsprefix --postgresql-logsprefix postgresql_logsprefix
 
Location for unixsockets unixsocket --postgresql-unixsocketdir postgresql_unixsocketdir
$TMPDIR
Database name dbname --postgresql-dbname postgresql_dbname yes, however with xdist an index is being added to name, resulting in test0, test1 for each worker. test
Default Schema either in sql files or import path to function that will load it (list of values for each) load --postgresql-load postgresql_load yes  
PostgreSQL connection options options --postgresql-options postgresql_options yes  

Example usage:

  • pass it as an argument in your own fixture

    postgresql_proc = factories.postgresql_proc(
        port=8888)
  • use --postgresql-port command line option when you run your tests

    py.test tests --postgresql-port=8888
    
  • specify your port as postgresql_port in your pytest.ini file.

    To do so, put a line like the following under the [pytest] section of your pytest.ini:

    [pytest]
    postgresql_port = 8888

Examples

Populating database for tests

With SQLAlchemy

This example shows how to populate database and create an SQLAlchemy's ORM connection:

Sample below is simplified session fixture from pyramid_fullauth tests:

from sqlalchemy import create_engine
from sqlalchemy.orm import scoped_session, sessionmaker
from sqlalchemy.pool import NullPool
from zope.sqlalchemy import register


@pytest.fixture
def db_session(postgresql):
    """Session for SQLAlchemy."""
    from pyramid_fullauth.models import Base

    connection = f'postgresql+psycopg2://{postgresql.info.user}:@{postgresql.info.host}:{postgresql.info.port}/{postgresql.info.dbname}'

    engine = create_engine(connection, echo=False, poolclass=NullPool)
    pyramid_basemodel.Session = scoped_session(sessionmaker(extension=ZopeTransactionExtension()))
    pyramid_basemodel.bind_engine(
        engine, pyramid_basemodel.Session, should_create=True, should_drop=True)

    yield pyramid_basemodel.Session

    transaction.commit()
    Base.metadata.drop_all(engine)


@pytest.fixture
def user(db_session):
    """Test user fixture."""
    from pyramid_fullauth.models import User
    from tests.tools import DEFAULT_USER

    new_user = User(**DEFAULT_USER)
    db_session.add(new_user)
    transaction.commit()
    return new_user


def test_remove_last_admin(db_session, user):
    """
    Sample test checks internal login, but shows usage in tests with SQLAlchemy
    """
    user = db_session.merge(user)
    user.is_admin = True
    transaction.commit()
    user = db_session.merge(user)

    with pytest.raises(AttributeError):
        user.is_admin = False

Note

See the original code at pyramid_fullauth's conftest file. Depending on your needs, that in between code can fire alembic migrations in case of sqlalchemy stack or any other code

Maintaining database state outside of the fixtures

It is possible and appears it's used in other libraries for tests, to maintain database state with the use of the pytest-postgresql database managing functionality:

For this import DatabaseJanitor and use its init and drop methods:

import pytest
from pytest_postgresql.janitor import DatabaseJanitor

@pytest.fixture
def database(postgresql_proc):
    # variable definition

    janitor = DatabaseJanitor(
        postgresql_proc.user,
        postgresql_proc.host,
        postgresql_proc.port,
        "my_test_database",
        postgresql_proc.version,
        password="secret_password,
    ):
    janitor.init()
    yield psycopg2.connect(
        dbname="my_test_database",
        user=postgresql_proc.user,
        password="secret_password",
        host=postgresql_proc.host,
        port=postgresql_proc.port,
    )
    janitor.drop()

or use it as a context manager:

import pytest
from pytest_postgresql.janitor import DatabaseJanitor

@pytest.fixture
def database(postgresql_proc):
    # variable definition

    with DatabaseJanitor(
        postgresql_proc.user,
        postgresql_proc.host,
        postgresql_proc.port,
        "my_test_database",
        postgresql_proc.version,
        password="secret_password,
    ):
        yield psycopg2.connect(
            dbname="my_test_database",
            user=postgresql_proc.user,
            password="secret_password",
            host=postgresql_proc.host,
            port=postgresql_proc.port,
        )

Note

DatabaseJanitor manages the state of the database, but you'll have to create connection to use in test code yourself.

You can optionally pass in a recognized postgresql ISOLATION_LEVEL for additional control.

Note

See DatabaseJanitor usage in python's warehouse test code https://github.com/pypa/warehouse/blob/5d15bfe/tests/conftest.py#L127

Connecting to Postgresql (in a docker)

To connect to a docker run postgresql and run test on it, use noproc fixtures.

docker run --name some-postgres -e POSTGRES_PASSWORD=mysecretpassword -d postgres

This will start postgresql in a docker container, however using a postgresql installed locally is not much different.

In tests, make sure that all your tests are using postgresql_noproc fixture like that:

postgresql_in_docker = factories.postgresql_noproc()
postresql = factories.postgresql("postgresql_in_docker", db_name="test")


def test_postgres_docker(postresql):
    """Run test."""
    cur = postgresql.cursor()
    cur.execute("CREATE TABLE test (id serial PRIMARY KEY, num integer, data varchar);")
    postgresql.commit()
    cur.close()

And run tests:

pytest --postgresql-host=172.17.0.2 --postgresql-password=mysecretpassword

Using a common database initialisation between tests

If you've got several tests that require common initialisation, you need to define a load and pass it to your custom postgresql process fixture:

import pytest_postgresql.factories
def load_database(**kwargs):
    db_connection: connection = psycopg2.connect(**kwargs)
    with db_connection.cursor() as cur:
        cur.execute("CREATE TABLE stories (id serial PRIMARY KEY, name varchar);")
        cur.execute(
            "INSERT INTO stories (name) VALUES"
            "('Silmarillion'), ('Star Wars'), ('The Expanse'), ('Battlestar Galactica')"
        )
        db_connection.commit()

postgresql_proc = factories.postgresql_proc(
    load=[load_database],
)

postgresql = factories.postgresql(
    "postgresql_proc",
)

You can also define your own database name by passing same dbname value to both factories.

The way this will work is that the process fixture will populate template database, which in turn will be used automatically by client fixture to create a test database from scratch. Fast, clean and no dangling transactions, that could be accidentally rolled back.

Same approach will work with noproces fixture, while connecting to already running postgresql instance whether it'll be on a docker machine or running remotely or locally.

Owner
Clearcode
Software house with a passion for technology. We specialize in building enterprise-grade adtech, martech and analytics platforms.
Clearcode
HTTP traffic mocking and testing made easy in Python

pook Versatile, expressive and hackable utility library for HTTP traffic mocking and expectations made easy in Python. Heavily inspired by gock. To ge

Tom 305 Dec 23, 2022
PENBUD is penetration testing buddy which helps you in penetration testing by making various important tools interactive.

penbud - Penetration Tester Buddy PENBUD is penetration testing buddy which helps you in penetration testing by making various important tools interac

Himanshu Shukla 15 Feb 01, 2022
A Simple Unit Test Matcher Library for Python 3

pychoir - Python Test Matchers for humans Super duper low cognitive overhead matching for Python developers reading or writing tests. Implemented in p

Antti Kajander 15 Sep 14, 2022
Python Projects - Few Python projects with Testing using Pytest

Python_Projects Few Python projects : Fast_API_Docker_PyTest- Just a simple auto

Tal Mogendorff 1 Jan 22, 2022
A Python program that will log into your scheduled Google Meets hands free

Chrome GMautomation General Information This Python program will open up Chrome and log into your scheduled Google Meet with camera and mic turned off

Jonathan Leow 5 Dec 31, 2021
Based on the selenium automatic test framework of python, the program crawls the score information of the educational administration system of a unive

whpu_spider 该程序基于python的selenium自动化测试框架,对某高校的教务系统的成绩信息实时爬取,在检测到成绩更新之后,会通过电子邮件的方式,将更新的成绩以文本的方式发送给用户,可以使得用户在不必手动登录教务系统网站时,实时获取成绩更新的信息。 该程序仅供学习交流,不可用于恶意攻

1 Dec 30, 2021
Useful additions to Django's default TestCase

django-test-plus Useful additions to Django's default TestCase from REVSYS Rationale Let's face it, writing tests isn't always fun. Part of the reason

REVSYS 546 Dec 22, 2022
A Library for Working with Sauce Labs

Robotframework - Sauce Labs Plugin This is a plugin for the SeleniumLibrary to help with using Sauce Labs. This library is a plugin extension of the S

joshin4colours 6 Oct 12, 2021
Active Directory Penetration Testing methods with simulations

AD penetration Testing Project By Ruben Enkaoua - GL4Di4T0R Based on the TCM PEH course (Heath Adams) Index 1 - Setting Up the Lab Intallation of a Wi

GL4DI4T0R 3 Aug 12, 2021
Automação de Processos (obtenção de informações com o Selenium), atualização de Planilha e Envio de E-mail.

Automação de Processo: Código para acompanhar o valor de algumas ações na B3. O código entra no Google Drive, puxa os valores das ações (pré estabelec

Hemili Beatriz 1 Jan 08, 2022
This is a Python script for Github Bot which uses Selenium to Automate things.

github-follow-unfollow-bot This is a Python script for Github Bot which uses Selenium to Automate things. Pre-requisites :- Python A Github Account Re

Chaudhary Hamdan 10 Jul 01, 2022
Automated testing tool developed in python for Advanced mathematical operations.

Advanced-Maths-Operations-Validations Automated testing tool developed in python for Advanced mathematical operations. Requirements Python 3.5 or late

Nikhil Repale 1 Nov 16, 2021
Tools for test driven data-wrangling and data validation.

datatest: Test driven data-wrangling and data validation Datatest helps to speed up and formalize data-wrangling and data validation tasks. It impleme

269 Dec 16, 2022
Let your Python tests travel through time

FreezeGun: Let your Python tests travel through time FreezeGun is a library that allows your Python tests to travel through time by mocking the dateti

Steve Pulec 3.5k Dec 29, 2022
Tutorial for integrating Oxylabs' Residential Proxies with Selenium

Oxylabs’ Residential Proxies integration with Selenium Requirements For the integration to work, you'll need to install Selenium on your system. You c

Oxylabs.io 8 Dec 08, 2022
Webscreener is a tool for mass web domains pentesting.

Webscreener is a tool for mass web domains pentesting. It is used to take snapshots for domains that is generated by a tool like knockpy or Sublist3r. It cuts out most of the pentesting time by scree

Seekurity 3 Jun 07, 2021
GitHub action for AppSweep Mobile Application Security Testing

GitHub action for AppSweep can be used to continuously integrate app scanning using AppSweep into your Android app build process

Guardsquare 14 Oct 06, 2022
Automated Penetration Testing Framework

Automated Penetration Testing Framework

OWASP 2.1k Jan 01, 2023
Mockoon is the easiest and quickest way to run mock APIs locally. No remote deployment, no account required, open source.

Mockoon Mockoon is the easiest and quickest way to run mock APIs locally. No remote deployment, no account required, open source. It has been built wi

mockoon 4.4k Dec 30, 2022
Django-google-optimize is a Django application designed to make running server side Google Optimize A/B tests easy.

Django-google-optimize Django-google-optimize is a Django application designed to make running Google Optimize A/B tests easy. Here is a tutorial on t

Adin Hodovic 39 Oct 25, 2022