Code for: https://berkeleyautomation.github.io/bags/

Overview

DeformableRavens

Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the project website, which also contains the data we used to train policies. Contents of this README:

Installation

This is how to get the code running on a local machine. First, get conda on the machine if it isn't there already:

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

Then, create a new Python 3.7 conda environment (e.g., named "py3-defs") and activate it:

conda create -n py3-defs python=3.7
conda activate py3-defs

Then install:

./install_python_ubuntu.sh

Note I: It is tested on Ubuntu 18.04. We have not tried other Ubuntu versions or other operating systems.

Note II: Installing TensorFlow using conda is usually easier than pip because the conda version will ship with the correct CUDA and cuDNN libraries, whereas the pip version is a nightmare regarding version compatibility.

Note III: the code has only been tested with PyBullet 3.0.4. In fact, there are some places which explicitly hard-code this requirement. Using later versions may work but is not recommended.

Environments and Tasks

This repository contains tasks in the ICRA 2021 submission and the predecessor paper on Transporters (presented at CoRL 2020). For the latter paper, there are (roughly) 10 tasks that came pre-shipped; the Transporters paper doesn't test with pushing or insertion-translation, but tests with all others. See Tasks.md for some task-specific documentation

Each task subclasses a Task class and needs to define its own reset(). The Task class defines an oracle policy that's used to get demonstrations (so it is not implemented within each task subclass), and is divided into cases depending on the action, or self.primitive, used.

Similarly, different tasks have different reward functions, but all are integrated into the Task super-class and divided based on the self.metric type: pose or zone.

Code Usage

Experiments start with python main.py, with --disp added for seeing the PyBullet GUI (but not used for large-scale experiments). The general logic for main.py proceeds as follows:

  • Gather expert demonstrations for the task and put it in data/{TASK}, unless there are already a sufficient amount of demonstrations. There are sub-directories for action, color, depth, info, etc., which store the data pickle files with consistent indexing per time step. Caution: this will start "counting" the data from the existing data/ directory. If you want entirely fresh data, delete the relevant file in data/.

  • Given the data, train the designated agent. The logged data is stored in logs/{AGENT}/{TASK}/{DATE}/{train}/ in the form of a tfevent file for TensorBoard. Note: it will do multiple training runs for statistical significance.

For deformables, we actually use a separate load.py script, due to some issues with creating multiple environments.

See Commands.md for commands to reproduce experimental results.

Downloading the Data

We normally generate 1000 demos for each of the tasks. However, this can take a long time, especially for the bag tasks. We have pre-generated datasets for all the tasks we tested with on the project website. Here's how to do this. For example, suppose we want to download demonstration data for the "bag-color-goal" task. Download the demonstration data from the website. Since this is also a goal-conditioned task, download the goal demonstrations as well. Make new data/ and goals/ directories and put the tar.gz files in the respective directories:

deformable-ravens/
    data/
        bag-color-goal_1000_demos_480Hz_filtered_Nov13.tar.gz
    goals/
        bag-color-goal_20_goals_480Hz_Nov19.tar.gz

Note: if you generate data using the main.py script, then it will automatically create the data/ scripts, and similarly for the generate_goals.py script. You only need to manually create data/ and goals/ if you only want to download and get pre-existing datasets in the right spot.

Then untar both of them in their respective directories:

tar -zxvf bag-color-goal_1000_demos_480Hz_filtered_Nov13.tar.gz
tar -zxvf bag-color-goal_20_goals_480Hz_Nov19.tar.gz

Now the data should be ready! If you want to inspect and debug the data, for example the goals data, then do:

python ravens/dataset.py --path goals/bag-color-goal/

Note that by default it saves any content in goals/ to goals_out/ and data in data/ to data_out/. Also, by default, it will download and save images. This can be very computationally intensive if you do this for the full 1000 demos. (The goals/ data only has 20 demos.) You can change this easily in the main method of ravens/datasets.py.

Running the script will print out some interesting data statistics for you.

Miscellaneous

If you have questions, please use the public issue tracker, so that all of us can benefit from your questions.

If you find this code or research paper helpful, please consider citing it:

@inproceedings{seita_bags_2021,
    author  = {Daniel Seita and Pete Florence and Jonathan Tompson and Erwin Coumans and Vikas Sindhwani and Ken Goldberg and Andy Zeng},
    title   = {{Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks}},
    journal = {arXiv preprint arXiv:2012.03385},
    Year    = {2020}
}
Owner
Daniel Seita
Computer science Ph.D. student at UC Berkeley working in Artificial Intelligence.
Daniel Seita
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
Решения, подсказки, тесты и утилиты для тренировки по алгоритмам от Яндекса.

Решения и подсказки к тренировке по алгоритмам от Яндекса Что есть внутри Решения с подсказками и комментариями; рекомендую сначала смотреть md файл п

Yankovsky Andrey 50 Dec 26, 2022
Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Phillip Lippe 1.1k Jan 07, 2023
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
A computational block to solve entity alignment over textual attributes in a knowledge graph creation pipeline.

How to apply? Create your config.ini file following the example provided in config.ini Choose one of the options below to run: Run with Python3 pip in

Scientific Data Management Group 3 Jun 23, 2022
Pytorch implementation of our paper accepted by NeurIPS 2021 -- Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) (Link) Overview Prerequisites Linu

Shaojie Li 34 Mar 31, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample

Alias-Free-Torch Simple torch module implementation of Alias-Free GAN. This repository including Alias-Free GAN style lowpass sinc filter @filter.py A

이준혁(Junhyeok Lee) 64 Dec 22, 2022
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 5 Jan 26, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022
Proof of concept GnuCash Webinterface

Proof of Concept GnuCash Webinterface This may one day be a something truly great. Milestones [ ] Browse accounts and view transactions [ ] Record sim

Josh 14 Dec 28, 2022
Classification of ecg datas for disease detection

ecg_classification Classification of ecg datas for disease detection

Atacan ÖZKAN 5 Sep 09, 2022
To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

JaxTon 💯 JAX exercises Mission 🚀 To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beg

Rohan Rao 512 Jan 01, 2023