The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Related tags

Deep Learningeirli
Overview

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Documentation status Dataset download link

Over the past handful of years, representation learning has exploded as a subfield, and, with it have come a plethora of new methods, each slightly different from the other.

Our Empirical Investigation of Representation Learning for Imitation (EIRLI) has two main goals:

  1. To create a modular algorithm definition system that allows researchers to easily pick and choose from a wide array of commonly used design axes
  2. To facilitate testing of representations within the context of sequential learning, particularly imitation learning and offline reinforcement learning

Common Use Cases

Do you want to…

  • Reproduce our results? You can find scripts and instructions here to help reproduce our benchmark results.
  • Design and experiment with a new representation learning algorithm using our modular components? You can find documentation on that here
  • Use our algorithm definitions in a setting other than sequential learning? The base example here demonstrates this simplified use case

Otherwise, you can see our full ReadTheDocs documentation here.

Modular Algorithm Design

This library was designed in a way that breaks down the definition of a representation learning algorithm into several key parts. The intention was that this system be flexible enough many commonly used algorithms can be defined through different combinations of these modular components.

The design relies on the central concept of a "context" and a "target". In very rough terms, all of our algorithms work by applying some transformation to the context, some transformation to the target, and then calculating a loss as a function of those two transformations. Sometimes an extra context object is passed in

Some examples are:

  • In SimCLR, the context and target are the same image frame, and augmentation and then encoding is applied to both context and target. That learned representation is sent through a decoder, and then the context and target representations are pulled together with a contrastive loss.
  • In TemporalCPC, the context is a frame at time t, and the target a frame at time t+k, and then, similarly to SimCLR above, augmentation is applied to the frame before it's put through an encoder, and the two resulting representations pulled together
  • In a Variational Autoencoder, the context and target are the same image frame. An bottleneck encoder and then a reconstructive decoder are applied to the context, and this reconstructed context is compared to the target through a L2 pixel loss
  • A Dynamics Prediction model can be seen as an conceptual combination of an autoencoder (which tries to predict the current full image frame) and TemporalCPC, which predicts future information based on current information. In the case of a Dynamics model, we predict a future frame (the target) given the current frame (context) and an action as extra context.

This abstraction isn't perfect, but we believe it is coherent enough to allow for a good number of shared mechanisms between algorithms, and flexible enough to support a wide variety of them.

The modular design mentioned above is facilitated through the use of a number of class interfaces, each of which handles a different component of the algorithm. By selecting different implementations of these shared interfaces, and creating a RepresentationLearner that takes them as arguments, and handles the base machinery of performing transformations.

A diagram showing how these components made up a training pipeline for our benchmark

  1. TargetPairConstructer - This component takes in a set of trajectories (assumed to be iterators of dicts containing 'obs' and optional 'acts', and 'dones' keys) and creates a dataset of (context, target, optional extra context) pairs that will be shuffled to form the training set.
  2. Augmenter - This component governs whether either or both of the context and target objects are augmented before being passed to the encoder. Note that this concept only meaningfully applies when the object being augmented is an image frame.
  3. Encoder - The encoder is responsible for taking in an image frame and producing a learned vector representation. It is optionally chained with a Decoder to produce the input to the loss function (which may be a reconstructed image in the case of VAE or Dynamics, or may be a projected version of the learned representation in the case of contrastive methods like SimCLR that use a projection head)
  4. Decoder - As mentioned above, the Decoder acts as a bridge between the representation in the form you want to use for transfer, and whatever input is required your loss function, which is often some transformation of that canonical representation.
  5. BatchExtender - This component is used for situations where you want to calculate loss on batch elements that are not part of the batch that went through your encoder and decoder on this step. This is centrally used for contrastive methods that use momentum, since in that case, you want to use elements from a cached store of previously-calculated representations as negatives in your contrastive loss
  6. LossCalculator - This component takes in the transformed context and transformed target and handles the loss calculation, along with any transformations that need to happen as a part of that calculation.

Training Scripts

In addition to machinery for constructing algorithms, the repo contains a set of Sacred-based training scripts for testing different Representation Learning algorithms as either pretraining or joint training components within an imitation learning pipeline. These are likeliest to be a fit for your use case if you want to reproduce our results, or train models in similar settings

Owner
Center for Human-Compatible AI
CHAI seeks to develop the conceptual and technical wherewithal to reorient the general thrust of AI research towards provably beneficial systems.
Center for Human-Compatible AI
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
Docker containers of baseline agents for the Crafter environment

Crafter Baselines This repository contains Docker containers for running various baselines on the Crafter environment. Reward Agents DreamerV2 based o

Danijar Hafner 17 Sep 25, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Clustering with variational Bayes and population Monte Carlo

pypmc pypmc is a python package focusing on adaptive importance sampling. It can be used for integration and sampling from a user-defined target densi

45 Feb 06, 2022
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
Bib-parser - Convenient script to parse .bib files with the ACM Digital Library like metadata

Bib Parser Convenient script to parse .bib files with the ACM Digital Library li

Mehtab Iqbal (Shahan) 1 Jan 26, 2022
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
License Plate Detection Application

LicensePlate_Project 🚗 🚙 [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. 데이터 수집 및 라벨링 차량 번호판 이미지를 직접 수집하여 각 이미지에 대해 '번호판

4 Oct 10, 2022
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023
TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline.

TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline

193 Dec 22, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
For IBM Quantum Challenge Africa 2021, 9 September (07:00 UTC) - 20 September (23:00 UTC).

IBM Quantum Challenge Africa 2021 To ensure Africa is able to apply quantum computing to solve problems relevant to the continent, the IBM Research La

Qiskit Community 48 Dec 25, 2022
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021