Tracing and Observability with OpenFaaS

Overview

Tracing and Observability with OpenFaaS

Today we will walk through how to add OpenTracing or OpenTelemetry with Grafana's Tempo.

For this walk-through we will need several CLI toosl:

  • kind
  • helm
  • kubectl
  • faas-cli

The simplest way to get going is to use arkade to install each of these

arkade get kubectl
arkade get kind
arkade get helm
arkade get faas-cli

Create a cluster

We will use KinD to create our Kubernetes cluster, but, before we start our test cluster, we want to customize our cluster to make it a little easier to work with by exposing port 80 to our localhost. We will use 80 for the ingress to our functions, create the following file as cluster.yaml

kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
nodes:
  - role: control-plane
    kubeadmConfigPatches:
      - |
        kind: InitConfiguration
        nodeRegistration:
          kubeletExtraArgs:
            node-labels: "ingress-ready=true"
    extraPortMappings:
      - containerPort: 30080
        hostPort: 80
        protocol: TCP
      - containerPort: 443
        hostPort: 443
        protocol: TCP
      - containerPort: 31112 # this is the NodePort created by the helm chart
        hostPort: 8080 # this is your port on localhost
        protocol: TCP

Now start the cluster using

kind create cluster --name of-tracing --config=cluster.yaml

Install the required apps

Now we can install the usual components we need

Tempo and Grafana

First we start with Tempo and Grafana so that the tracing collector service is available for the other services we will install:

helm repo add grafana https://grafana.github.io/helm-charts
helm repo update

Now create the following values file

# grafana-values.yaml
env:
  GF_AUTH_ANONYMOUS_ENABLED: true
  GF_AUTH_ANONYMOUS_ORG_ROLE: "Admin"
  GF_AUTH_DISABLE_LOGIN_FORM: true

grafana.ini:
  server:
    domain: monitoring.openfaas.local
    root_url: "%(protocol)s://%(domain)s/grafana"
    serve_from_sub_path: true

datasources:
  datasources.yaml:
    apiVersion: 1

    datasources:
      - name: Tempo
        type: tempo
        access: proxy
        orgId: 1
        url: http://tempo:3100
        isDefault: false
        version: 1
        editable: false
        uid: tempo
      - name: Loki
        type: loki
        access: proxy
        url: http://loki:3100
        isDefault: true
        version: 1
        editable: false
        uid: loki
        jsonData:
          derivedFields:
            - datasourceUid: tempo
              matcherRegex: (?:traceID|trace_id|traceId|traceid=(\w+))
              url: "$${__value.raw}"
              name: TraceID

This will do several things for us:

  1. configure the Grafana UI to handle the sub-path prefix /grafana
  2. configure the Tempo data source, this is where our traces will be queried from
  3. configure the Loki data source, this is where our logs come from
  4. finally, as part of the Loki configuration, we setup the derived field TraceID, which allows Loki to parse the trace id from the logs turn it into a link to Tempo.

Now, we can install Tempo and then Grafana

helm upgrade --install tempo grafana/tempo
helm upgrade -f grafana-values.yaml --install grafana grafana/grafana

NOTE the Grafana Helm chart does expose Ingress options that we could use, but they currently do not generate a valid Ingress spec to use with the latest nginx-ingress, specifically, it is missing an incressClhelm upgrade -f grafana-values.yaml --install grafana grafana/grafana. We will handle this later, below.

Nginx

First we want to enable Nginx to generate incoming tracing spans. We are going to enable this globally in our Nginx installation by using the config option

arkade install ingress-nginx \
    --set controller.config.enable-opentracing='true' \
    --set controller.config.jaeger-collector-host=tempo.default.svc.cluster.local \
    --set controller.hostPort.enabled='true' \
    --set controller.service.type=NodePort \
    --set controller.service.nodePorts.http=30080 \
    --set controller.publishService.enabled='false' \
    --set controller.extraArgs.publish-status-address=localhost \
    --set controller.updateStrategy.rollingUpdate.maxSurge=0 \
    --set controller.updateStrategy.rollingUpdate.maxUnavailable=1 \
    --set controller.config.log-format-upstream='$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent" $request_length $request_time [$proxy_upstream_name] [$proxy_alternative_upstream_name] $upstream_addr $upstream_response_length $upstream_response_time $upstream_status $req_id traceId $opentracing_context_uber_trace_id'

Most of these options are specific the fact that we are installing in KinD. The settings that are important to our tracing are these three

--set controller.config.enable-opentracing='true' \
--set controller.config.jaeger-collector-host=tempo.default.svc.cluster.local \
--set controller.config.log-format-upstream='$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent" $request_length $request_time [$proxy_upstream_name] [$proxy_alternative_upstream_name] $upstream_addr $upstream_response_length $upstream_response_time $upstream_status $req_id traceId $opentracing_context_uber_trace_id'

The first two options enable tracing and send the traces to our Tempo collector. The last option configures the nginx logs to include the trace ID in the logs. In general, I would recommend putting the logs into logfmt structure, in short, usingkey=value. This is automatically parsed into fields by Loki and it is much easier to read in it's raw form. Unfortunately, at this time, arkade will not parse --set values with an equal sign. Using

--set controller.config.log-format-upstream='remote_addr=$remote_addr user=$remote_user ts=$time_local request="$request" status=$status body_bytes=$body_bytes_sent referer="$http_referer" user_agent="$http_user_agent" request_length=$request_length duration=$request_time upstream=$proxy_upstream_name upstream_addr=$upstream_addr upstream_resp_length=$upstream_response_length upstream_duration=$upstream_response_time upstream_status=$upstream_status traceId=$opentracing_context_uber_trace_id'

will produce the error Error: incorrect format for custom flag

Let's expose our Grafana installation! Create this file as grafana-ing.yaml

# grafana-ing.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: grafana
  namespace: default
spec:
  ingressClassName: nginx
  rules:
    - host: monitoring.openfaas.local
      http:
        paths:
          - backend:
              service:
                name: grafana
                port:
                  number: 80
            path: /grafana
            pathType: Prefix

and apply it to the cluster

kubectl apply -f grafana-ing.yaml

Verifying the ingress and grafana

Now, let's verify that things are working,

  1. edit your /etc/hosts file to include

    127.0.0.1 gateway.openfaas.local
    127.0.0.1 monitoring.openfaas.local
    
  2. Now open http://monitoring.openfaas.local

  3. You can explore the logs from nginx, using the Loki query

    {app_kubernetes_io_name="ingress-nginx"}
    

    use this link to open the query in your Grafana.

OpenFaaS

Now that we are prepared to monitor our applications, let's install OpenFaaS and and some functions

arkade install openfaas -a=false --function-pull-policy=IfNotPresent --set ingress.enabled='true'
arkade install openfaas-loki

Because we exposed port 8080 when we setup the Cluster and disabled auth when we installed OpenFaaS, we can start using faas-cli right away

$ faas-cli store deploy nodeinfo

Deployed. 202 Accepted.
URL: http://127.0.0.1:8080/function/nodeinfo

But, we can also use the OpenFaaS UI at http://gateway.openfaas.local

Let's generate some data by invoking the function

echo "" | faas-cli invoke nodeinfo

In the Grafana UI, you can see the logs using the query {faas_function="nodeinfo"}, use this link.

Creating traces from your function

Unfortunately, the OpenFaaS gateway does not produces traces like nginx, so right now we only get a very high level overview from our traces. Nginx will show us the timing as well as the request URL and response status code.

Fortunately, all of the request headers are correctly forwarded to our functions, most importantly this includes the tracing headers generated by Nginx. This means we provide more details

This example will use the Python 3 Flask template and OpenTelemetry.

Setup

  1. Pull the function template using

    faas-cli template store pull python3-flask
  2. Initialize the app is-it-down

    faas-cli new is-it-down --lang python3-flask
    mv is-it-down.yml stack.yml
  3. Now, set up our python dependencies, add this to the requirements.txt

    opentelemetry-api==1.7.1
    opentelemetry-exporter-otlp==1.7.1
    opentelemetry-instrumentation-flask==0.26b1
    opentelemetry-instrumentation-requests==0.26b1
    opentelemetry-sdk==1.7.1
    requests==2.26.0
    
  4. Now the implementation

Owner
Lucas Roesler
I am a senior engineer at Contiamo and an ex-mathematician. I have worked on web apps, image analysis, machine learning problems, and pure math research
Lucas Roesler
SciPy library main repository

SciPy SciPy (pronounced "Sigh Pie") is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimiza

SciPy 10.7k Jan 09, 2023
My repository for the Advent of Code, starting from 2021

Advent of Code This is my repository for the Advent of Code (https://adventofcode.com/), starting from 2021. File Structure Inside each year folder, s

Yu-Ting 6 Dec 15, 2021
A general illumination correction method for optical microscopy.

CIDRE About CIDRE is a retrospective illumination correction method for optical microscopy. It is designed to correct collections of images by buildin

Kevin Smith 31 Sep 07, 2022
Simple rofi script to choose player for playerctl to execute its command

rofi-playerctl-switcher simple rofi script to choose player for playerctl to execute its command Usage copy playerSwitch.py and playerctl.sh to ~/.con

2 Jan 03, 2022
Pyhexdmp - Python hex dump module

Pyhexdmp - Python hex dump module

25 Oct 23, 2022
CaskDB is a disk-based, embedded, persistent, key-value store based on the Riak's bitcask paper, written in Python.

CaskDB - Disk based Log Structured Hash Table Store CaskDB is a disk-based, embedded, persistent, key-value store based on the Riak's bitcask paper, w

886 Dec 27, 2022
Taxonomy addition for complete trees

TACT: Taxonomic Addition for Complete Trees TACT is a Python app for stochastic polytomy resolution. It uses birth-death-sampling estimators across an

Jonathan Chang 3 Jun 07, 2022
Backtest framework based on DAGs

MultitaskQueue It's a simple framework based on three composed concepts: Task: A task is the smaller unit of execution or simple a node in the DAG, ev

4 Dec 09, 2021
A short course on Julia and open-source software development

Advanced Scientific Computing: producing better code This course is taught as a 6-session "nanocourse" at Washington University in St. Louis. See the

Tim Holy 230 Jan 07, 2023
IEEE ITU bunyesinde komitelere verilen Python3 egitiminin dokumanlastirilmis versiyonlari bu repository altinda tutulmaktadir.

IEEE ITU Python Egitimi Nasil Faydalanmaliyim? Dersleri izledikten sonra dokumanlardaki kodlari yorum satirlari isaretlerini kaldirarak deneyebilirsin

İTÜ IEEE Student Branch 47 Sep 04, 2022
Automated Birthday Wisher built using Python

Automated Birthday Wisher This Automation of wishing Birthday is achieved using Python. Never forget to wish birthday! Table of contents Overview Scre

yashviradia 1 Nov 29, 2021
A service to display a quick summary of a project on GitHub.

A service to display a quick summary of a project on GitHub. Usage 📖 Paste the code below with details filled in as specified below into your Readme.

Rohit V 8 Dec 06, 2022
A simple service that allows you to run commands on the server using text

Server Text A simple flask service that allows you to run commands on the server/computer over sms. Think of it as a shell where you run commands over

MT Devs 49 Nov 09, 2021
Tools to convert SQLAlchemy models to Pydantic models

Pydantic-SQLAlchemy Tools to generate Pydantic models from SQLAlchemy models. Still experimental. How to use Quick example: from typing import List f

Sebastián Ramírez 893 Dec 29, 2022
Decipher using Markov Chain Monte Carlo

Decipher using Markov Chain Monte Carlo

Science étonnante 43 Dec 24, 2022
Coded in Python 3 - I make for education, easily clone simple website.

Simple Website Cloner - Single Page Coded in Python 3 - I make for education, easily clone simple website. How to use ? Install Python 3 first. Instal

Phạm Đức Thanh 2 Jan 13, 2022
We'll be using HTML, CSS and JavaScript for the frontend

We'll be using HTML, CSS and JavaScript for the frontend. Nothing to install in specific. Open your text-editor and start coding a beautiful front-end.

Mugada sai tilak 1 Dec 15, 2021
TeamFleming is a multicultural group of 20 young bioinformatics enthusiasts participating in the 2021 HackBio Virtual Summer Internship

💻 Welcome to Team Fleming's Repo! #TeamFleming is a multicultural group of 20 young bioinformatics enthusiasts participating in the 2021 HackBio Virt

3 Aug 08, 2021
This script can be used to get unlimited Gb for WARP.

Warp-Unlimited-GB This script can be used to get unlimited Gb for WARP. How to use Change the value of the 'referrer' to warp id of yours You can down

Anix Sam Saji 1 Feb 14, 2022
tox-gh is a tox plugin which helps running tox on GitHub Actions with multiple different Python versions on multiple workers in parallel

tox-gh is a tox plugin which helps running tox on GitHub Actions with multiple different Python versions on multiple workers in parallel. This project is inspired by tox-travis.

tox development team 19 Dec 26, 2022