Handwritten Character Recognition using CNN

Overview

Handwritten Character Recognition using CNN

Problem Definition

The main objective of this project is to solve the problem of handwritten character recognition. It is a multi-class image classification problem where the task is to correctly recognize the given handwritten character (the character can be a digit (0-9) or a capital alphabet (A-Z)).

Character recognition, usually abbreviated to optical character recognition or shortened OCR, is the mechanical or electronic translation of images of handwritten, typewritten or printed text (usually captured by a scanner) into machine-editable text. It is an open problem in the fields of computer vision and deep learning. It is a problem which looks easy, but is hard to implement. Even with so many advances in the fields of computer vision and deep learning, 100% accuracy in this problem has not yet been achieved.

This project targets an easier problem than proper handwriting recognition. Here, the objective is to recognize separate characters rather than cursive handwriting.

Since image processing and training neural networks is generally a heavy task, and given the large training set size, parallel computing via CUDA for training the network on GPU has also been explored in this project.

Analysis

The problem is approached using Convolutional Neural Networks (CNNs) and coded in Python. The framework used for CNNs is Pytorch, which is an open-source machine learning library based on the Torch library, used for applications such as computer vision and natural language processing, primarily developed by Facebook's AI Research lab.

2 datasets have been combined to form the training data for this problem. The first one is the MNIST dataset containing 60,000 images for handwritten digits. The second one is a modified version of the NIST Special Database 19, called the Kaggle A-Z dataset (by Sachin Patel). It contains 3,72,450 images of handwritten alphabets (A-Z) in a CSV

format, making it easy to load and pre-process data. Each of these datasets contains grayscale images (1-channel) of shape 28x28.

The model developed follows a CNN architecture with Convolutional layers for feature extraction, Pooling and Dropout layers for regularization (to prevent overfitting) and finally Fully Connected layers for classifying the images. The model has a bit more than 5 Million trainable parameters.

The model uses a Negative Log Likelihood loss function, which is a commonly used loss function for image classification tasks. The optimizer used is Adam, which is known to provide better results than simple optimizers like SGD.

The output of the model is log-probabilities for each class. The maximum of these is taken as the predicted class for the image.

This model is not meant for cursive handwriting. It is meant to classify only single capital English letters (A-Z) and digits (0-9).

To achieve a desirable accuracy, taking advantage of the fact that training data is abundant, a bit complex architecture comprising several Convolutional and Dense layers has been constructed. To minimize training times on this complex architecture, the model has been trained on a GPU via Pytorch’s API for CUDA.

Implementation and Testing

As stated earlier, the project is implemented using Python. The CNN model is built using Pytorch. The input images for training the model are stored in inputs folder. Training script is stored in src folder, while the modules for testing the model have been stored in a Jupyter Notebook stored in notebooks folder. Any custom images to

be tested can be placed inside the custom_images folder. The trained model weights are stored in models folder.

For training, a 6GB Nvidia GeForce GTX 1660Ti GPU was used. The code has been written in such a way that it will automatically detect if CUDA is available and will train on GPU, otherwise it will use CPU.

image

The above code first wraps the data inside a Dataset class, as required by Pytorch Data Loaders. Then, the data is split into training and validation sets (4,00,000 and 32,451 examples respectively). Finally, both the training and validation datasets are passed into DataLoader.

image

Then, the above code defines the CNN architecture used in this project. All the layers have already been described earlier. It also sets the optimizer to Adam and device to CUDA for training the model on GPU.

image

The training process involves first obtaining the current batch via the Pytorch Data Loader(the batch size has been set to 64, i.e. on a single iteration, 64 images will be passed to the model for efficient computation). The batch size can be increased depending upon the RAM and other computing resources available. Then, if CUDA is available, the data (images and the corresponding labels) are transferred to the GPU. The outputs are calculated via the current weights of the network, and the loss is computed via Negative Log Likelihood loss function. Then, a backward step is taken for training by the Backpropagation algorithm. The weights of the model are adjusted according to the loss. The optimizer function used for this is Adam. This process is repeated for 2 epochs over the entire training set (thus a total of 2 x 4,00,000 = 8,00,000 times). Since the training set is huge, the training process is observed to be much faster when run on a GPU than a CPU.

image

For testing on the validation set, again the data is first transferred to GPU (if available). Then the outputs are calculated by passing the input to the model. The model outputs log likelihoods. For getting the output label, the maximum of these likelihoods is taken.

Testing on custom image is a bit more complex, since most modern cameras take high resolution RGB (3-channel) pictures. First, the images are reduced from 3 channels to

1 channel (i.e. from RGB to grayscale). If the images are of a very high resolution (greater than 1500 pixels), then Gaussian Blurring is applied to smoothen the image. Then, the images are reshaped to 28x28 pixels (since the model was trained on 28x28 shape images). Normally, custom images will have a white background (white paper) and black ink, but the model had images with black background and white ink. So, the colours of all images are inverted (so that they have black background with white ink on top). Then, to sharpen the image and remove noise, all pixels with a value above 127 are converted to 255 (white) and below 127 are converted to 0. i.e. the image is converted to pure black and white to remove all noise. Finally, the transformations applied to training images are applied to these images too, i.e. pixel values are divided by 255, normalized and converted to Pytorch tensors. Finally, prediction is made using these tensors. Pytorch Data Loaders have not been used when testing the model on individual images.

image

Original image:

image

Pre-processed image:

image

For best results, the custom images should have less noise (background must be as clean as possible), and the ink used must be thick, preferably a sketch pen instead of a regular gel/ball pen (because thin ink combined with high resolution will lead to a poor quality image when resized to 28x28). The provided custom images were taken from a mobile camera producing images of resolution 3472x4624. The digits were written with a black marker on a whiteboard.

The model achieves an overall training accuracy of 98.2% and validation accuracy of 98%. Since the difference is not significantly large, it is verified that the model is not overfitting. The results can be further improved through techniques like image augmentation, regularization, building a deeper architecture and getting more training data.

Summary

In this project, a CNN model with more than 5 million parameters was successfully trained to recognize single handwritten capital English alphabets (A-Z) and digits (0- 9). The model achieves a satisfactory accuracy on the dataset and performs reasonably well on custom images. Performance on custom images can be improved through various steps described earlier. Further, it was noticed that the training time was significantly shorter when the model was trained on GPU than CPU. This model classifies only single characters. To classify a complete line of text consisting both alphabets and digits (in non-cursive form), this program can be extended via opencv’s functionalities and some pre-built object detection models to detect where the text is written, isolate them and classify each of the characters separately.

References

• Official Pytorch documentation - https://pytorch.org/tutorials/
• Notes from Stanford’s course CS231n - https://cs231n.github.io/
https://www.thinkautomation.com/bots-and-ai/why-is-handwriting-recognition- so-difficult-for-ai/
• OpenCV tutorials - https://opencv-python- tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_table_of_contents _imgproc/py_table_of_contents_imgproc.html

Links to Datasets Used

• MNIST: https://www.kaggle.com/oddrationale/mnist-in-csv
• Modified NIST Special Database 19: https://www.kaggle.com/sachinpatel21/az-handwritten-alphabets-in-csv-format

Owner
Mohit Kaushik
Mohit Kaushik
A Vietnamese personal card OCR website built with Django.

Django VietCardOCR Installation Creation of virtual environments is done by executing the command venv: python -m venv venv That will create a new fol

Truong Hoang Thuan 4 Sep 04, 2021
Table Extraction Tool

Tree Structure - Table Extraction Fonduer has been successfully extended to perform information extraction from richly formatted data such as tables.

HazyResearch 88 Jun 02, 2022
OCR software for recognition of handwritten text

Handwriting OCR The project tries to create software for recognition of a handwritten text from photos (also for Czech language). It uses computer vis

Břetislav Hájek 562 Jan 03, 2023
Opencv face recognition desktop application

Opencv-Face-Recognition Opencv face recognition desktop application Program developed by Gustavo Wydler Azuaga - 2021-11-19 Screenshots of the program

Gus 1 Nov 19, 2021
Just a script for detecting the lanes in any car game (not just gta 5) with specific resolution and road design ( very basic and limited )

GTA-5-Lane-detection Just a script for detecting the lanes in any car game (not just gta 5) with specific resolution and road design ( very basic and

Danciu Georgian 4 Aug 01, 2021
Automatically resolve RidderMaster based on TensorFlow & OpenCV

AutoRiddleMaster Automatically resolve RidderMaster based on TensorFlow & OpenCV 基于 TensorFlow 和 OpenCV 实现的全自动化解御迷士小马谜题 Demo How to use Deploy the ser

神龙章轩 5 Nov 19, 2021
A synthetic data generator for text recognition

TextRecognitionDataGenerator A synthetic data generator for text recognition What is it for? Generating text image samples to train an OCR software. N

Edouard Belval 2.5k Jan 04, 2023
Code for paper "Role-based network embedding via structural features reconstruction with degree-regularized constraint"

Role-based network embedding via structural features reconstruction with degree-regularized constraint Train python main.py --dataset brazil-flights

wang zhang 1 Jun 28, 2022
[python3.6] 运用tf实现自然场景文字检测,keras/pytorch实现ctpn+crnn+ctc实现不定长场景文字OCR识别

本文基于tensorflow、keras/pytorch实现对自然场景的文字检测及端到端的OCR中文文字识别 update20190706 为解决本项目中对数学公式预测的准确性,做了其他的改进和尝试,效果还不错,https://github.com/xiaofengShi/Image2Katex 希

xiaofeng 2.7k Dec 25, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

An Agnostic Object Detection Framework IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-q

airctic 790 Jan 05, 2023
A tool to make dumpy among us GIFS

Among Us Dumpy Gif Maker Made by ThatOneCalculator & Pixer415 With help from Telk, karl-police, and auguwu! Please credit this repository when you use

Kainoa Kanter 535 Jan 07, 2023
A little but useful tool to explore OCR data extracted with `pytesseract` and `opencv`

Screenshot OCR Tool Extracting data from screen time screenshots in iOS and Android. We are exploring 3 options: Simple OCR with no text position usin

Gabriele Marini 1 Dec 07, 2021
Read Japanese manga inside browser with selectable text.

mokuro Read Japanese manga with selectable text inside a browser. See demo: https://kha-white.github.io/manga-demo mokuro_demo.mp4 Demo contains excer

Maciej Budyś 170 Dec 27, 2022
Deskew is a command line tool for deskewing scanned text documents. It uses Hough transform to detect "text lines" in the image. As an output, you get an image rotated so that the lines are horizontal.

Deskew by Marek Mauder https://galfar.vevb.net/deskew https://github.com/galfar/deskew v1.30 2019-06-07 Overview Deskew is a command line tool for des

Marek Mauder 127 Dec 03, 2022
Handwritten_Text_Recognition

Deep Learning framework for Line-level Handwritten Text Recognition Short presentation of our project Introduction Installation 2.a Install conda envi

24 Jul 15, 2022
Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation

This is the official implementation of "Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation". For more details, please

Pengyuan Lyu 309 Dec 06, 2022
Markup for note taking

Subtext: markup for note-taking Subtext is a text-based, block-oriented hypertext format. It is designed with note-taking in mind. It has a simple, pe

Gordon Brander 224 Jan 01, 2023
POT : Python Optimal Transport

This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.

Python Optimal Transport 1.7k Jan 04, 2023
A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database.

A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database. The structure, shape and proportions of the faces are comp

Pavankumar Khot 4 Mar 19, 2022
text detection mainly based on ctpn model in tensorflow, id card detect, connectionist text proposal network

text-detection-ctpn Scene text detection based on ctpn (connectionist text proposal network). It is implemented in tensorflow. The origin paper can be

Shaohui Ruan 3.3k Dec 30, 2022