Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

Overview

A Comprehensive Experimental Evaluation for Database Configuration Tuning

This is the source code to the paper "Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation". Please refer to the paper for the experimental details.

Table of Content

An Efficient Database Configuration Tuning Benchmark via Surrogate

Through the benchmark, you can evaluate the tuning optimizers' performance with minimum overhead.

Quick installation & Run

  1. Preparations: Python == 3.7

  2. Install packages and download the surrogate model

    pip install -r requirements.txt
    pip install .

The surrogate models can be found in the Google drive. To easily run the tuning benchmark, you can download the surrogate models and place them in the fold autotune/tuning_benchmark/surrogate.

  1. Run the benchmark. We use optimization over the configuration space of JOB as an example.
python run_benchmark.py --method=VBO --knobs_config=experiment/gen_knobs/JOB_shap.json --knobs_num=5 --workload=job  --lhs_log=result/job_5knobs_vbo.res
python run_benchmark.py --method=MBO   --knobs_config=experiment/gen_knobs/JOB_shap.json --knobs_num=5 --workload=job --lhs_log=result/job_5knobs_mbo.res
python run_benchmark.py --method=SMAC  --knobs_config=experiment/gen_knobs/JOB_shap.json --knobs_num=5 --workload=job   --lhs_log=result/job_5knobs_smac.res
python run_benchmark.py --method=TPE --knobs_config=experiment/gen_knobs/JOB_shap.json --knobs_num=5 --workload=job  --lhs_log=result/job_5knobs_tpe.res
python run_benchmark.py --method=TURBO --knobs_config=experiment/gen_knobs/JOB_shap.json --knobs_num=5 --workload=job --lhs_log=result/job_5knobs_turbo.res --tr_init 
python run_benchmark.py --method=GA --knobs_config=experiment/gen_knobs/JOB_shap.json --knobs_num=5 --workload=job --lhs_log=result/job_5knobs_ga.res 

Data Description

You can find all the training data for the tuning benchmark in autotune/tuning_benchmark/data.

Experimental Evaluation

Environment Installation

In our experiments, the operating system is Linux 4.9. We conduct experimets on MySQL 5.7.19.

  1. Preparations: Python == 3.7

  2. Install packages

    pip install -r requirements.txt
    pip install .
  3. Download and install MySQL 5.7.19 and boost

    wget http://sourceforge.net/projects/boost/files/boost/1.59.0/boost_1_59_0.tar.gz
    wget https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-boost-5.7.19.tar.gz
    
    sudo cmake . -DCMAKE_INSTALL_PREFIX=PATH_TO_INSTALL -DMYSQL_DATADIR=PATH_TO_DATA -DDEFAULT_CHARSET=utf8 -DDEFAULT_COLLATION=utf8_general_ci -DMYSQL_TCP_PORT=3306 -DWITH_MYISAM_STORAGE_ENGINE=1 -DWITH_INNOBASE_STORAGE_ENGINE=1 -DWITH_ARCHIVE_STORAGE_ENGINE=1 -DWITH_BLACKHOLE_STORAGE_ENGINE=1 -DWITH_MEMORY_STORAGE_ENGINE=1 -DENABLE_DOWNLOADS=1 -DDOWNLOAD_BOOST=1 -DWITH_BOOST=PATH_TO_BOOST;
    sudo make -j 16;
    sudo make install;

Workload Preparation

SYSBENCH

Download and install

git clone https://github.com/akopytov/sysbench.git
./autogen.sh
./configure
make && make install

Load data

sysbench --db-driver=mysql --mysql-host=$HOST --mysql-socket=$SOCK --mysql-port=$MYSQL_PORT --mysql-user=root --mysql-password=$PASSWD --mysql-db=sbtest --table_size=800000 --tables=150 --events=0 --threads=32 oltp_read_write prepare > sysbench_prepare.out

OLTP-Bench

We install OLTP-Bench to use the following workload: TPC-C, SEATS, Smallbank, TATP, Voter, Twitter, SIBench.

  • Download
git clone https://github.com/oltpbenchmark/oltpbench.git
  • To run oltpbenchmark outside the folder, modify the following file:

    • ./src/com/oltpbenchmark/DBWorkload.java (Line 85)

      pluginConfig = new XMLConfiguration("PATH_TO_OLTPBENCH/config/plugin.xml"); # modify this
      
    • ./oltpbenchmark

      
      #!/bin/bash
      
      java -Xmx8G -cp `$OLTPBENCH_HOME/classpath.sh bin` -Dlog4j.configuration=$OLTPBENCH_HOME/log4j.properties com.oltpbenchmark.DBWorkload $@
      
      
    • ./classpath.sh

      #!/bin/bash
      
      echo -ne "$OLTPBENCH_HOME/build"
      
      for i in `ls $OLTPBENCH_HOME/lib/*.jar`; do
      
          # IMPORTANT: Make sure that we do not include hsqldb v1
      
          if [[ $i =~ .*hsqldb-1.* ]]; then
      
              continue
      
          fi
      
          echo -ne ":$i"
      
      done
      
  • Install

    ant bootstrap
    ant resolve
    ant build

Join-Order-Benchmark (JOB)

Download IMDB Data Set from http://homepages.cwi.nl/~boncz/job/imdb.tgz.

Follow the instructions of https://github.com/winkyao/join-order-benchmark to load data into MySQL.

Environment Variables

Before running the experiments, the following environment variables require to be set.

export SYSBENCH_BIN=PATH_TO_sysbench/src/sysbench
export OLTPBENCH_BIN=PATH_TO_oltpbench/oltpbenchmark
export MYSQLD=PATH_TO_mysqlInstall/bin/mysqld
export MYSQL_SOCK=PATH_TO_mysql/base/mysql.sock
export MYCNF=PATH_TO_autotune/template/experiment_normandy.cnf
export DATADST=PATH_TO_mysql/data
export DATASRC=PATH_TO_mysql/data_copy

Experiments Design

All optimization methods are listed as follows:

Method String of ${METHOD}
Vanilla BO VBO
Mixed-Kernel BO MBO
Sequential Model-based Algorithm Configuration SMAC
Tree-structured Parzen Estimator TPE
Trust-Region BO TURBO
Deep Deterministic Policy Gradient DDPG
Genetic Algorithm GA

Exp.1: Tuning improvement over knob set generated by different important measurements.

Compared importance measurements: lasso, gini, fanova, ablation, shap.

To conduct the experiment shown in Figure 3(a), the script is as follows. Please specify ${lhs_log}.

python train.py --knobs_config=experiment/gen_knobs/JOB_lasso.json    --knobs_num=5 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_gini.json     --knobs_num=5 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_fanova.json   --knobs_num=5 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_ablation.json --knobs_num=5 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_shap.jso      --knobs_num=5 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}

python train.py --knobs_config=experiment/gen_knobs/JOB_lasso.json    --knobs_num=20 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_gini.json     --knobs_num=20 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_fanova.json   --knobs_num=20 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_ablation.json --knobs_num=20 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}
python train.py --knobs_config=experiment/gen_knobs/JOB_shap.jso      --knobs_num=20 --method=VBO --workload=job --dbname=imdboload --y_variable=lat --lhs_num=10 --lhs_log=${lhs_log}

To conduct the experiments in (b), (c), and (d), modify ${knobs_num},${method},${workload}, ${dbname}, and ${y_variable}, where

  • ${knobs_num} = 5, 20

  • ${method} = VBO, DDPG

  • ${workload} = job, sysbench

    • if ${workload} == job, then ${dbname} = imdbload, ${y_variable}=lat
    • if ${workload} == sysbench, then ${dbname} =sbtest , ${y_variable}=tps

Note${knobs_config} indicates the configuration file where knobs are ranked by importance.

  • We provide the configuration file generated on our VM: experiment/gen_knobs/${workload}_${measure}.json.
  • You can also generate new configuration file with samples in your environment.

Exp.2: Performance improvement and tuning cost when increasing the number of tuned knobs.

To conduct the experiment shown in Figure 5 (a) and 5 (b), the script is as follows.

python train.py --method=VBO --workload=job --dbname=imdbload --y_variable=lat --lhs_num=10 --knobs_num=${knobs_num} --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=VBO --workload=sysbench --dbname=sbtest --y_variable=tps --lhs_num=10 --knobs_num=${knobs_num} --knobs_config=experiment/gen_knobs/SYSBENCH_shap.json --lhs_log=${lhs_log}

Please specify ${knobs_num} and ${lhs_log}, where

  • ${knobs_num} = 5, 10, 15, 20, 30, 50, 70, 90, 197

Exp.3: Incremental Knob Selection.

Compared methods: 5 Knobs, 20 Knobs, increase, decrease.

To conduct the experiment shown in Figure 6(a), the script is as follows. Please specify ${lhs_log}.

python train.py --method=VBO       --knobs_num=5  --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=VBO       --knobs_num=20 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=increase --knobs_num=-1 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=decrease   --knobs_num=-1 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}

To conduct the experiment shown in (b), you can

  • replace --workload=JOB --y_variable=lat with --workload=sysbench --y_variable=tps

Exp.4: Optimizer comparision on different configuration space.

Compared optimizers: VBO, MBO, SMAC, TPE, TURBO, DDPG, GA.

To conduct the experiment shown in Figure 7(a), the script is as follows. Please specify ${lhs_log}.

python train.py --method=VBO   --knobs_num=5 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=MBO   --knobs_num=5 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=SMAC  --knobs_num=5 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=TPE   --knobs_num=5 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=TURBO --knobs_num=5 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=DDPG  --knobs_num=5 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}
python train.py --method=GA    --knobs_num=5 --workload=job --y_variable=lat --dbname=imdbload --knobs_config=experiment/gen_knobs/JOB_shap.json --lhs_log=${lhs_log}

To conduct the experiment shown in (b), (c), (d), (e), (f), and (g), you can

  • replace --knobs_num=5 with--knobs_num=20 or --knobs_num=197
  • replace --workload=JOB --y_variable=lat --dbname=imdbload with --workload=sysbench --y_variable=tps --dbname=sbtest

Exp.5: Comparison experiment for knobs heterogeneity.

Compared optimizers: VBO, MBO, SMAC, DDPG.

To conduct the experiment shown in Figure 8(a) and (b), the script is as follows.

python train.py --method=${method} --knobs_num=20 --workload=job --y_variable=lat --dbname=${dbname}   --knobs_config=experiment/gen_knobs/JOB_continuous.json --lhs_log=${lhs_log} --lhs_num=10
python train.py --method=${method} --knobs_num=20 --workload=job --y_variable=lat --dbname=${dbname}   --knobs_config=experiment/gen_knobs/JOB_heterogeneous.json --lhs_log=${lhs_log} --lhs_num=10

Please specify ${method}, ${dbname} and ${lhs_log}, where

  • ${method} is one of VBO, MBO, SMAC, DDPG.

Exp.6: Algorithm overhead comparison.

Compared optimizers: MBO, SMAC, TPE, TURBO, DDPG, GA.

To conduct the experiment shown in Figure 8(a) and (b), the script is as follows.

python train.py --method=${method} --knobs_num=20 --workload=job --y_variable=lat --dbname=${dbname}   --knobs_config=experiment/gen_knobs/job_shap.json --lhs_log=${lhs_log} --lhs_num=10

Please specify ${method}, ${dbname} and ${lhs_log}, where

  • ${method} is one of MBO, SMAC, TPE, TURBO, DDPG, GA.

Note if you have already done Exp.4, you can skip running the above script and analyze log files in script/log/.

Exp.7: Transfering methods comparison.

Compared methods: RGPE-MBO, RGPE-SMAC, MAP-MBO, MAP-SMAC, FineTune-DDPG

To conduct the experiment shown in Table 9, there are two steps:

  • Pre-train on source workloads (Smallbank, SIBench, Voter, Seats, TATP);
  • Validate on target workloads (TPCC, SYSBENCH, Twitter).

Scripts for pre-trains is similar to the ones for Exp.4

To validate on target workloads, the scripts are as follows.

python train.py --method=MBO  --RGPE --source_repo=${repo}         --knobs_num=20 --workload=job --y_variable=lat --dbname=tpcc   --knobs_config=experiment/gen_knobs/oltp.json --lhs_log=${lhs_log} --lhs_num=10 
python train.py --method=SMAC --RGPE --source_repo=${repo}         --knobs_num=20 --workload=job --y_variable=lat --dbname=tpcc   --knobs_config=experiment/gen_knobs/oltp.json --lhs_log=${lhs_log} --lhs_num=10  
python train.py --method=MBO  --workload_map --source_repo=${repo} --knobs_num=20 --workload=job --y_variable=lat --dbname=tpcc   --knobs_config=experiment/gen_knobs/oltp.json --lhs_log=${lhs_log} --lhs_num=10 
python train.py --method=SMAC --workload_map --source_repo=${repo} --knobs_num=20 --workload=job --y_variable=lat --dbname=tpcc   --knobs_config=experiment/gen_knobs/oltp.json --lhs_log=${lhs_log} --lhs_num=10 
python train.py --method=DDPG --params=model_params/${ddpg_params} --knobs_num=20 --workload=job --y_variable=lat --dbname=tpcc   --knobs_config=experiment/gen_knobs/oltp.json --lhs_log=${lhs_log} --lhs_num=10 

Note that

  • for RGPE- methods, you should specify --RGPE --source_repo=${repo}
  • for MAP- methods, you should specify --workload_map --source_repo=${repo}
  • for FineTune-DDPG, you should specify --params=model_params/${ddpg_params}

Project Code Overview

  • autotune/tuner.py : the implemented optimization methods.
  • autotune/dbenv.py : the interacting functions with database.
  • script/train.py : the python script to start an experiment.
  • script/experiment/gen_knob : the knob importance ranking files generated by different methods.
Owner
DAIR Lab
Data and Intelligence Research (DAIR) Lab @ Peking University
DAIR Lab
Mercury: easily convert Python notebook to web app and share with others

Mercury Share your Python notebooks with others Easily convert your Python notebooks into interactive web apps by adding parameters in YAML. Simply ad

MLJAR 2.2k Dec 27, 2022
Geometric Deep Learning Extension Library for PyTorch

Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for

Matthias Fey 16.5k Jan 08, 2023
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

RuleBERT: Teaching Soft Rules to Pre-Trained Language Models (Paper) (Slides) (Video) RuleBERT is a pre-trained language model that has been fine-tune

16 Aug 24, 2022
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
Convert Apple NeuralHash model for CSAM Detection to ONNX.

Apple NeuralHash is a perceptual hashing method for images based on neural networks. It can tolerate image resize and compression.

Asuhariet Ygvar 1.5k Dec 31, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022
Implements a fake news detection program using classifiers.

Fake news detection Implements a fake news detection program using classifiers for Data Mining course at UoA. Description The project is the categoriz

Apostolos Karvelas 1 Jan 09, 2022
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake

Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p

Flask Extensions 611 Dec 05, 2022
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati

Kai Li (李凯) 116 Nov 09, 2022
Quantum-enhanced transformer neural network

Example of a Quantum-enhanced transformer neural network Get the code: git clone https://github.com/rdisipio/qtransformer.git cd qtransformer Create

Riccardo Di Sipio 61 Nov 08, 2022
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
Differentiable simulation for system identification and visuomotor control

gradsim gradSim: Differentiable simulation for system identification and visuomotor control gradSim is a unified differentiable rendering and multiphy

105 Dec 18, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022