This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

Overview

PlyTitle_Generation

This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by 2nd Workshop on NLP for Music and Spoken Audio co-located with ISMIR'2021.

Inference Results

This model use the track_id sequence as an input and return the playlist title sequence as an output.

  • Melon dataset's results can be found here (test set).
" }, "69588": { "ground_truth": "걸그룹의 대표적인 곡들", "prediction": "신나는 댄스곡 모음 " }, "66941": { "ground_truth": "미리 메리 크리스마스", "prediction": "크리스마스 캐롤 크리스마스 캐롤 " },">
    "25269": {
        "ground_truth": "취향저격 감성힙합+α 두번째",
        "prediction": "r&b soul introduction 버벌진트 
     
      "
    },
    "69588": {
        "ground_truth": "걸그룹의 대표적인 곡들",
        "prediction": "신나는 댄스곡 모음 
      
       "
    },
    "66941": {
        "ground_truth": "미리 메리 크리스마스",
        "prediction": "크리스마스 캐롤 크리스마스 캐롤 
       
        "
    },

       
      
     
  • Spotify-million-playlist-dataset dataset's results can be found here (test set).
" }, "634077": { "ground_truth": "history of rap", "prediction": "old school hip hop " } "540451": { "ground_truth": "metal up your ass", "prediction": "rock and roll " },">
    "923035": {
        "ground_truth": "wedding dinner music",
        "prediction": "wedding - cocktail hour 
     
      "
    },
    "634077": {
        "ground_truth": "history of rap",
        "prediction": "old school hip hop 
      
       "
    }
    "540451": {
        "ground_truth": "metal up your ass",
        "prediction": "rock and roll 
       
        "
    },

       
      
     

Environment

  1. Install python and PyTorch:

    • python==3.8.5
    • torch==1.9.0 (Please install it according to your CUDA version, in my case cu111)
  2. Other requirements:

    • pip install -r requirements.txt

Training from scratch

  1. Download the data files from spotify-million-playlist and Melon Kakao.

  2. Run preprocessing code and split dataset

python preprocessing.py

or you can download pre-split dataset from here.

  1. Training options (best pramas):
python train.py --dataset_type melon --model transfomer --shuffle True --e_pos False
python train.py --dataset_type mpd --model transfomer --shuffle True --e_pos False
  1. Evaluation & Inference
python eval.py --dataset_type melon --model transfomer --shuffle True --e_pos False
python infer.py --dataset_type melon --model transfomer --shuffle True --e_pos False

Reference

https://github.com/bentrevett/pytorch-seq2seq

Owner
SeungHeonDoh
Music Informational Retrieval, Multimedia, Multimodal
SeungHeonDoh
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

Graph Convolutional Gated Recurrent Neural Network (GCGRNN) Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF

Lei Lin 21 Dec 18, 2022
Tidy interface to polars

tidypolars tidypolars is a data frame library built on top of the blazingly fast polars library that gives access to methods and functions familiar to

Mark Fairbanks 144 Jan 08, 2023
Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow

Do you want a RL agent nicely moving on Atari? Rainbow is all you need! This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains bo

Jinwoo Park (Curt) 1.4k Dec 29, 2022
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
A pre-trained model with multi-exit transformer architecture.

ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
VM3000 Microphones

VM3000-Microphones This project was completed by Ricky Leman under the supervision of Dr Ben Travaglione and Professor Melinda Hodkiewicz as part of t

UWA System Health Lab 0 Jun 04, 2021
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in Eurographics 2021

Deep-Detail-Enhancement-for-Any-Garment Introduction This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in

40 Dec 13, 2022
FairMOT for Multi-Class MOT using YOLOX as Detector

FairMOT-X Project Overview FairMOT-X is a multi-class multi object tracker, which has been tailored for training on the BDD100K MOT Dataset. It makes

Jonathan Tan 33 Dec 28, 2022
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023