Implement the Perspective open source code in preparation for data visualization

Overview

Task Overview | Installation Instructions | Link to Module 2

Introduction

Experience Technology at JP Morgan Chase

Try out what real work is like in the technology team JP Morgan Chase. Fast track to the tech team with your work.

Module 2 Task Overview

Use JP Morgan Chase's frameworks and tools Implement JP Morgan Chase’s Perspective open source code in preparation for data visualization

Aim:Take an incomplete setup of Perspective, i.e. a graph that updates manually, and make it work with the code from Task 1 such that it now updates automatically by continuously requesting from the server application

  1. Please clone this repository to start the task
  2. [goal-a] In the client application, observe that when new data feed is retrieved whenever you click the 'Start Streaming Data' button, the previous entry is re-entered into the table. Update the application so that the table does not have duplicated entries
  3. [goal-b] We also want the react app to keep continuosly requesting data from the python server. Currently, the data feed is called only once every time the 'Start Streaming' button is clicked. Change the application to continuously query the datafeed every 100ms when the 'Start Streaming' is clicked.
  4. [goal-c] Currently, the Perspective element only shows the data in table view after the data loads. Add Perspective configurations so that when the data is loaded, it shows the historical data of ask_price ABC in the Y line chart.
  5. Upload a git patch file as the submission to this task

Set up / Installation

In order to get the server and client application code working on your machine, follow the setup here

Note:This is the version of the JPM 2 exercise that uses Python 3. The Python 2.7 version is in this other repo

How to Run

Similar to Task 1, start the data feed server by running the python server.

Make sure your terminal / command line is in the repository first before doing any of this.

If you are using Windows, make sure to run your terminal/command prompt as administrator.

python datafeed/server3.py

If you encounter an issue with datautil.parser, run this command:

pip install python-dateutil

If you don't have pip, you can install it from: https://pip.pypa.io/en/stable/installing/

Run npm install && npm start to start the React application.

It's okay to have audit warnings when installing/running the app.

If you don't have npm (although you should if you followed the set up / installation part), you can install the recommended version alongside NodeJS from: https://nodejs.org/en/

The recommended version are node v11.0.0 and npm v6.4.1

Open http://localhost:3000 to view the app in the browser. The page will reload if you make edits.

Known Issues

Some users seem to be having trouble with the unzipped version of the node_modules back up for windows. This is the alternative unzipped version: https://drive.google.com/drive/folders/1wzIlt-OeiK6nYEHidsOGlpJ_KmeoPVXz

Note: You may need to (hard) refresh the link to the public gdrive to see all of the files/folders e.g. @jpmorganchase/perspective as it takes gdrive a bit to load them for you.

How to fix the code to meet the objectives

To make the changes necessary to complete the objectives of this task, follow this guide.

How to submit your work

A patch file is what is required from you to submit. To create a patch file, follow this guide. Then submit the patch file in the JPM Module 2 Page.

Owner
Abdulazeez Jimoh
Junior Software Engineer
Abdulazeez Jimoh
Backend app for visualizing CANedge log files in Grafana (directly from local disk or S3)

CANedge Grafana Backend - Visualize CAN/LIN Data in Dashboards This project enables easy dashboard visualization of log files from the CANedge CAN/LIN

13 Dec 15, 2022
Bar Chart of the number of Senators from each party who are up for election in the next three General Elections

Congress-Analysis Bar Chart of the number of Senators from each party who are up for election in the next three General Elections This bar chart shows

11 Oct 26, 2021
clock_plot provides a simple way to visualize timeseries data, mapping 24 hours onto the 360 degrees of a polar plot

clock_plot clock_plot provides a simple way to visualize timeseries data mapping 24 hours onto the 360 degrees of a polar plot. For usage, please see

12 Aug 24, 2022
Tidy data structures, summaries, and visualisations for missing data

naniar naniar provides principled, tidy ways to summarise, visualise, and manipulate missing data with minimal deviations from the workflows in ggplot

Nicholas Tierney 611 Dec 22, 2022
A D3.js plugin that produces flame graphs from hierarchical data.

d3-flame-graph A D3.js plugin that produces flame graphs from hierarchical data. If you don't know what flame graphs are, check Brendan Gregg's post.

Martin Spier 740 Dec 29, 2022
Python Data. Leaflet.js Maps.

folium Python Data, Leaflet.js Maps folium builds on the data wrangling strengths of the Python ecosystem and the mapping strengths of the Leaflet.js

6k Jan 02, 2023
Make scripted visualizations in blender

Scripted visualizations in blender The goal of this project is to script 3D scientific visualizations using blender. To achieve this, we aim to bring

Praneeth Namburi 10 Jun 01, 2022
PolytopeSampler is a Matlab implementation of constrained Riemannian Hamiltonian Monte Carlo for sampling from high dimensional disributions on polytopes

PolytopeSampler PolytopeSampler is a Matlab implementation of constrained Riemannian Hamiltonian Monte Carlo for sampling from high dimensional disrib

9 Sep 26, 2022
A Jupyter - Three.js bridge

pythreejs A Python / ThreeJS bridge utilizing the Jupyter widget infrastructure. Getting Started Installation Using pip: pip install pythreejs And the

Jupyter Widgets 844 Dec 27, 2022
An XLSX spreadsheet renderer for Django REST Framework.

drf-renderer-xlsx provides an XLSX renderer for Django REST Framework. It uses OpenPyXL to create the spreadsheet and returns the data.

The Wharton School 166 Dec 01, 2022
Mathematical learnings with Lean, for those of us who wish we knew more of both!

Lean for the Inept Mathematician This repository contains source files for a number of articles or posts aimed at explaining bite-sized mathematical c

Julian Berman 8 Feb 14, 2022
A program that analyzes data from inertia measurement units installed in aircraft and generates g-exceedance curves.

A program that analyzes data from inertia measurement units installed in aircraft and generates g-exceedance curves.

Pooya 1 Dec 02, 2021
Visualize data of Vietnam's regions with interactive maps.

Plotting Vietnam Development Map This is my personal project that I use plotly to analyse and visualize data of Vietnam's regions with interactive map

1 Jun 26, 2022
Visualizations of some specific solutions of different differential equations.

Diff_sims Visualizations of some specific solutions of different differential equations. Heat Equation in 1 Dimension (A very beautiful and elegant ex

2 Jan 13, 2022
A small collection of tools made by me, that you can use to visualize atomic orbitals in both 2D and 3D in different aspects.

Orbitals in Python A small collection of tools made by me, that you can use to visualize atomic orbitals in both 2D and 3D in different aspects, and o

Prakrisht Dahiya 1 Nov 25, 2021
Visualize the bitcoin blockchain from your local node

Project Overview A new feature in Bitcoin Core 0.20 allows users to dump the state of the blockchain (the UTXO set) using the command dumptxoutset. I'

18 Sep 11, 2022
Param: Make your Python code clearer and more reliable by declaring Parameters

Param Param is a library providing Parameters: Python attributes extended to have features such as type and range checking, dynamically generated valu

HoloViz 304 Jan 07, 2023
Interactive plotting for Pandas using Vega-Lite

pdvega: Vega-Lite plotting for Pandas Dataframes pdvega is a library that allows you to quickly create interactive Vega-Lite plots from Pandas datafra

Altair 342 Oct 26, 2022
Easily convert matplotlib plots from Python into interactive Leaflet web maps.

mplleaflet mplleaflet is a Python library that converts a matplotlib plot into a webpage containing a pannable, zoomable Leaflet map. It can also embe

Jacob Wasserman 502 Dec 28, 2022