A Python project for optimizing the 8 Queens Puzzle using the Genetic Algorithm implemented in PyGAD.

Overview

8QueensGenetic

A Python project for optimizing the 8 Queens Puzzle using the Genetic Algorithm implemented in PyGAD.

The project uses the Kivy cross-platform Python framework for building the GUI of the 8 queens puzzle. The GUI helps to visualize the solutions reached while the genetic algorithm (GA) is optimizing the problem to find the best solution.

For implementing the genetic algorithm, the PyGAD library is used. Check its documentation here: https://pygad.readthedocs.io

IMPORTANT If you are coming for the code of the tutorial 8 Queen Puzzle Optimization Using a Genetic Algorithm in Python, then it has been moved to the TutorialProject directory on 17 June 2020.

PyGAD Installation

To install PyGAD, simply use pip to download and install the library from PyPI (Python Package Index). The library lives a PyPI at this page https://pypi.org/project/pygad.

For Windows, issue the following command:

pip install pygad

For Linux and Mac, replace pip by use pip3 because the library only supports Python 3.

pip3 install pygad

PyGAD is developed in Python 3.7.3 and depends on NumPy for creating and manipulating arrays and Matplotlib for creating figures. The exact NumPy version used in developing PyGAD is 1.16.4. For Matplotlib, the version is 3.1.0.

Project GUI

The project comes with a GUI built in Kivy, a cross-platform Python framework for building natural user interfaces. Before using the project, install Kivy:

pip install kivy

Because the project is built using Python 3, use pip3 instead of pip for Mac/Linux:

pip3 install kivy

Check this Stackoverflow answer to install other libraries that are essential to run Kivy: https://stackoverflow.com/a/44220712

The main file for this project is called main.py which holds the code for building the GUI and instantiating PyGAD for running the genetic algorithm.

After running the main.py file successfully, the window will appear as given in the figure below. The GUI uses a GridLayout for creating an 8x8 grid. This grid represents the board of the 8 queen puzzle.

main

The objective of the GA is to find the best locations for the 8 queens so that no queen is attacking another horizontally, vertically, or diagonally. This project assumes that no 2 queens are in the same row. As a result, we are sure that no 2 queens will attack each other horizontally. This leaves us to the 2 other types of attacks (vertically and diagonally).

The bottom part of the window has 3 Button widgets and 1 Label widget. From left to right, the description of the 3 Button widgets is as follows:

  • The Initial Population button creates the initial population of the GA.
  • The Show Best Solution button shows the best solution in the last generation the GA stopped at.
  • The Start GA button starts the GA iterations/generations.

The Label widget just prints some informational messages to the user. For example, it prints the fitness value of the best solution when the user presses the Show Best Solution button.

Steps to Use the Project

Follow these steps to use the project:

  1. Run the main.py file.
  2. Press the Initial Population Button.
  3. Press the Start GA Button.

After pressing the Start GA button, the GA uses the initial population and evolves its solutions until reaching the best possible solution.

Behind the scenes, some important stuff was built that includes building the Kivy GUI, instantiating PyGAD, preparing the the fitness function, preparing the callback function, and more. For more information, please check the tutorial titled 8 Queen Puzzle Optimization Using a Genetic Algorithm in Python.

6 Attacks

After running the main.py file and pressing the Initial Population button, the next figure shows one possible initial population in which 6 out of 8 queens are attacking each other.

1  6 attacks

In the Label, the fitness value is calculated as 1.0/number of attacks. In this case, the fitness value is equal to 1.0/6.0 which is 0.1667.

The next figures shows how the GA evolves the solutions until reaching the best solution in which 0 attacks exists.

5 Attacks

2  5 attacks

4 Attacks

3  4 attacks

3 Attacks

4  3 attacks

2 Attacks

5  2 attacks

1 Attack

6  1 attack

0 Attacks (Optimal Solution)

7  0 attack

IMPORTANT

It is very important to note that the GA does not guarantee reaching the optimal solution each time it works. You can make changes in the number of solutions per population, the number of generations, or the number of mutations. Other than doing that, the initial population might also be another factor for not reaching the optimal solution for a given trial.

For More Information

There are different resources that can be used to get started with the building CNN and its Python implementation.

Tutorial: 8 Queen Puzzle Optimization Using a Genetic Algorithm in Python

In 1 May 2019, I wrote a tutorial discussing this project. The tutorial is titled 8 Queen Puzzle Optimization Using a Genetic Algorithm in Python which is published at Heartbeat. Check it at these links:

Tutorial Cover Image

Book: Practical Computer Vision Applications Using Deep Learning with CNNs

You can also check my book cited as Ahmed Fawzy Gad 'Practical Computer Vision Applications Using Deep Learning with CNNs'. Dec. 2018, Apress, 978-1-4842-4167-7 which discusses neural networks, convolutional neural networks, deep learning, genetic algorithm, and more.

Find the book at these links:

Fig04

Citing PyGAD - Bibtex Formatted Citation

If you used PyGAD, please consider adding a citation to the following paper about PyGAD:

@misc{gad2021pygad,
      title={PyGAD: An Intuitive Genetic Algorithm Python Library}, 
      author={Ahmed Fawzy Gad},
      year={2021},
      eprint={2106.06158},
      archivePrefix={arXiv},
      primaryClass={cs.NE}
}

Contact Us

Owner
Ahmed Gad
Ph.D. Student at uOttawa // Machine Learning Researcher & Technical Author https://amazon.com/author/ahmedgad
Ahmed Gad
Implemented page rank program

Page Rank Implemented page rank program based on fact that a website is more important if it is linked to by other important websites using recursive

Vaibhaw 6 Aug 24, 2022
Robotic Path Planner for a 2D Sphere World

Robotic Path Planner for a 2D Sphere World This repository contains code implementing a robotic path planner in a 2D sphere world with obstacles. The

Matthew Miceli 1 Nov 19, 2021
My own Unicode compression algorithm

Zee Code ZCode is a custom compression algorithm I originally developed for a competition held for the Spring 2019 Datastructures and Algorithms cours

Vahid Zehtab 2 Oct 20, 2021
QDax is a tool to accelerate Quality-Diveristy (QD) algorithms through hardware accelerators and massive parallelism

QDax: Accelerated Quality-Diversity QDax is a tool to accelerate Quality-Diveristy (QD) algorithms through hardware accelerators and massive paralleli

Adaptive and Intelligent Robotics Lab 183 Dec 30, 2022
A command line tool for memorizing algorithms in Python by typing them.

Algo Drills A command line tool for memorizing algorithms in Python by typing them. In alpha and things will change. How it works Type out an algorith

Travis Jungroth 43 Dec 02, 2022
A simple python implementation of A* and bfs algorithm solving Eight-Puzzle

A simple python implementation of A* and bfs algorithm solving Eight-Puzzle

2 May 22, 2022
Planning Algorithms in AI and Robotics. MSc course at Skoltech Data Science program

Planning Algorithms in AI and Robotics course T2 2021-22 The Planning Algorithms in AI and Robotics course at Skoltech, MS in Data Science, during T2,

Mobile Robotics Lab. at Skoltech 6 Sep 21, 2022
A* (with 2 heuristic functions), BFS , DFS and DFS iterativeA* (with 2 heuristic functions), BFS , DFS and DFS iterative

Descpritpion This project solves the Taquin game (jeu de taquin) problem using different algorithms : A* (with 2 heuristic functions), BFS , DFS and D

Ayari Ahmed 3 May 09, 2022
Programming Foundations Algorithms With Python

Programming-Foundations-Algorithms Algorithms purpose to solve a specific proplem with a sequential sets of steps for instance : if you need to add di

omar nafea 1 Nov 01, 2021
Python implementation of Aho-Corasick algorithm for string searching

Python implementation of Aho-Corasick algorithm for string searching

Daniel O'Sullivan 1 Dec 31, 2021
Zipline, a Pythonic Algorithmic Trading Library

Zipline, a Pythonic Algorithmic Trading Library

Stefan Jansen 463 Jan 08, 2023
Policy Gradient Algorithms (One Step Actor Critic & PPO) from scratch using Numpy

Policy Gradient Algorithms From Scratch (NumPy) This repository showcases two policy gradient algorithms (One Step Actor Critic and Proximal Policy Op

1 Jan 17, 2022
A simple library for implementing common design patterns.

PyPattyrn from pypattyrn.creational.singleton import Singleton class DummyClass(object, metaclass=Singleton): # DummyClass is now a Singleton!

1.7k Jan 01, 2023
Using A * search algorithm and GBFS search algorithm to solve the Romanian problem

Romanian-problem-using-Astar-and-GBFS Using A * search algorithm and GBFS search algorithm to solve the Romanian problem Romanian problem: The agent i

Mahdi Hassanzadeh 6 Nov 22, 2022
Slight modification to one of the Facebook Salina examples, to test the A2C algorithm on financial series.

Facebook Salina - Gym_AnyTrading Slight modification of Facebook Salina Reinforcement Learning - A2C GPU example for financial series. The gym FOREX d

Francesco Bardozzo 5 Mar 14, 2022
All algorithms implemented in Python for education

The Algorithms - Python All algorithms implemented in Python - for education Implementations are for learning purposes only. As they may be less effic

1 Oct 20, 2021
Gnat - GNAT is NOT Algorithmic Trading

GNAT GNAT is NOT Algorithmic Trading! GNAT is a financial tool with two goals in

Sher Shah 2 Jan 09, 2022
Algorithms and utilities for SAR sensors

WARNING: THIS CODE IS NOT READY FOR USE Sarsen Algorithms and utilities for SAR sensors Objectives Be faster and simpler than ESA SNAP and cloud nativ

B-Open 201 Dec 27, 2022
Python-Strongest-Encrypter - Transform your text into encrypted symbols using their dictionary

How does the encrypter works? Transform your text into encrypted symbols using t

1 Jul 10, 2022
Algorithms implemented in Python

Python Algorithms Library Laurent Luce Description The purpose of this library is to help you with common algorithms like: A* path finding. String Mat

Laurent Luce 264 Dec 06, 2022