Weakly Supervised End-to-End Learning (NeurIPS 2021)

Overview

WeaSEL: Weakly Supervised End-to-end Learning

Python PyTorch Lightning Config: hydra license

This is a PyTorch-Lightning-based framework, based on our End-to-End Weak Supervision paper (NeurIPS 2021), that allows you to train your favorite neural network for weakly-supervised classification1

  • only with multiple labeling functions (LFs)2, i.e. without any labeled training data!
  • in an end-to-end manner, i.e. directly train and evaluate your neural net (end-model from here on), there's no need to train a separate label model any more as in Snorkel & co,
  • with better test set performance and enhanced robustness against correlated or inaccurate LFs than prior methods like Snorkel

1 This includes learning from crowdsourced labels or annotations!
2 LFs are labeling heuristics, that output noisy labels for (subsets of) the training data (e.g. crowdworkers or keyword detectors).

Credits

Getting Started

This library assumes familiarity with (multi-source) weak supervision, if that's not the case you may want to first learn its basics in e.g. this overview slides from Stanford or this Snorkel tutorial.

That being said, have a look at our examples and the notebooks therein showing you how to use Weasel for your own dataset, LF set, or end-model. E.g.:

Reproducibility

Please have a look at the research code branch, which operates on pure PyTorch.

Installation

1. New environment (recommended, but optional)
conda create --name weasel python=3.7  # or other python version >=3.7
conda activate weasel  
2a: From source
python -m pip install git+https://github.com/autonlab/weasel#egg=weasel[all]
2b: From source, editable install
git clone https://github.com/autonlab/weasel.git
cd weasel
pip install -e .[all]

Minimal dependencies

Minimal dependencies, in particular not using Hydra, can be installed with

python -m pip install git+https://github.com/autonlab/weasel

The needed environment corresponds to conda env create -f env_gpu_minimal.yml.

If you choose to use this variant, you won't be able to run some of the examples: You may want to have a look at this notebook that walks you through how to use Weasel without Hydra as the config manager.

Note: Weasel is under active development, some uncovered edge cases might exist, and any feedback is very welcomed!

Apply WeaSEL to your own problem

Configuration with Hydra

Optional: This template config will help you get started with your own application, an analogous config is used in this tutorial script that you may want to check out.

Pre-defined or custom downstream models & Baselines

Please have a look at the detailed instructions in this Readme.

Using your own dataset and/or labeling heuristics

Please have a look at the detailed instructions in this Readme.

Citation

@article{cachay2021endtoend,
  author={R{\"u}hling Cachay, Salva and Boecking, Benedikt and Dubrawski, Artur},
  journal={Advances in Neural Information Processing Systems}, 
  title={End-to-End Weak Supervision},
  year={2021}
}
Owner
Auton Lab, Carnegie Mellon University
Auton Lab, Carnegie Mellon University
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport

Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport This GitHub page provides code for reproducing the results i

Andrew Zammit Mangion 1 Nov 08, 2021
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021
Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation [AAAI 2021] DropLoss for Long-Tail Instance Segmentation Ting-I Hsieh*, Esther Robb*, Hwann-Tz

Tim 37 Dec 02, 2022
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
Public repository of the 3DV 2021 paper "Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds"

Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds Björn Michele1), Alexandre Boulch1), Gilles Puy1), Maxime Bucher1) and Rena

valeo.ai 15 Dec 22, 2022
Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Towards Representation Learning for Atmospheric Dynamics (AtmoDist) The prediction of future climate scenarios under anthropogenic forcing is critical

Sebastian Hoffmann 4 Dec 15, 2022
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Théo Deprelle 123 Nov 11, 2022
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022