Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization (ACL 2021)

Overview

Structured Super Lottery Tickets in BERT

This repo contains our codes for the paper "Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization" (ACL 2021).


Getting Start

  1. python3.6
    Reference to download and install : https://www.python.org/downloads/release/python-360/
  2. install requirements
    > pip install -r requirements.txt

Data

  1. Download data
    sh download.sh
    Please refer to download GLUE dataset: https://gluebenchmark.com/
  2. Preprocess data
    > sh experiments/glue/prepro.sh
    For more data processing details, please refer to this repo.

Verifying Phase Transition Phenomenon

  1. Fine-tune a pre-trained BERT model with single task data, compute importance scores, and generate one-shot structured pruning masks at multiple sparsity levels. E.g., for MNLI, run

    ./scripts/train_mnli.sh GPUID
    
  2. Rewind and evaluate the winning, random, and losing tickets at multiple sparsity levels. E.g., for MNLI, run

    ./scripts/rewind_mnli.sh GPUID
    

You may try tasks with smaller sizes (e.g., SST, MRPC, RTE) to see a more pronounced phase transition.


Multi-task Learning (MTL) with Tickets Sharing

  1. Identify a set of super tickets for each individual task.

    • Identify winning tickets at multiple sparsity levels for each individual task. E.g., for MTDNN-base, run

      ./scripts/prepare_mtdnn_base.sh GPUID
      

      We recommend to use the same optimization settings, e.g., learning rate, optimizer and random seed, in both the ticket identification procedures and the MTL. We empirically observe that the super tickets perform better in MTL in such a case.

    • [Optional] For each individual task, identify a set of super tickets from the winning tickets at multiple sparsity levels. You can skip this step if you wish to directly use the set of super tickets identified by us. If you wish to identify super tickets on your own (This is recommended if you use a different optimization settings, e.g., learning rate, optimizer and random seed, from those in our scripts. These factors may affect the candidacy of super tickets.), we provide the template scripts

      ./scripts/rewind_mnli_winning.sh GPUID
      ./scripts/rewind_qnli_winning.sh GPUID
      ./scripts/rewind_qqp_winning.sh GPUID
      ./scripts/rewind_sst_winning.sh GPUID
      ./scripts/rewind_mrpc_winning.sh GPUID
      ./scripts/rewind_cola_winning.sh GPUID
      ./scripts/rewind_stsb_winning.sh GPUID
      ./scripts/rewind_rte_winning.sh GPUID
      

      These scripts rewind the winning tickets at multiple sparsity levels. You can manually identify the set of super tickets as the set of winning tickets that perform the best among all sparsity levels.

  2. Construct multi-task super tickets by aggregating the identified sets of super tickets of all tasks. E.g., to use the super tickets identified by us, run

    python construct_mtl_mask.py
    

    You can modify the script to use the super tickets identified by yourself.

  3. MTL with tickets sharing. Run

    ./scripts/train_mtdnn.sh GPUID
    

MTL Benchmark

MTL evaluation results on GLUE dev set averaged over 5 random seeds.

Model MNLI-m/mm (Acc) QNLI (Acc) QQP (Acc/F1) SST-2 (Acc) MRPC (Acc/F1) CoLA (Mcc) STS-B (P/S) RTE (Acc) Avg Score Avg Compression
MTDNN, base 84.6/84.2 90.5 90.6/87.4 92.2 80.6/86.2 54.0 86.2/86.4 79.0 82.4 100%
Tickets-Share, base 84.5/84.1 91.0 90.7/87.5 92.7 87.0/90.5 52.0 87.7/87.5 81.2 83.3 92.9%
MTDNN, large 86.5/86.0 92.2 91.2/88.1 93.5 85.2/89.4 56.2 87.2/86.9 83.0 84.4 100%
Tickets-Share, large 86.7/86.0 92.1 91.3/88.4 93.2 88.4/91.5 61.8 89.2/89.1 80.5 85.4 83.3%

Citation

@article{liang2021super,
  title={Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization},
  author={Liang, Chen and Zuo, Simiao and Chen, Minshuo and Jiang, Haoming and Liu, Xiaodong and He, Pengcheng and Zhao, Tuo and Chen, Weizhu},
  journal={arXiv preprint arXiv:2105.12002},
  year={2021}
}

@article{liu2020mtmtdnn,
  title={The Microsoft Toolkit of Multi-Task Deep Neural Networks for Natural Language Understanding},
  author={Liu, Xiaodong and Wang, Yu and Ji, Jianshu and Cheng, Hao and Zhu, Xueyun and Awa, Emmanuel and He, Pengcheng and Chen, Weizhu and Poon, Hoifung and Cao, Guihong and Jianfeng Gao},
  journal={arXiv preprint arXiv:2002.07972},
  year={2020}
}

Contact Information

For help or issues related to this package, please submit a GitHub issue. For personal questions related to this paper, please contact Chen Liang ([email protected]).

Owner
Chen Liang
Chen Liang
Implementation for paper BLEU: a Method for Automatic Evaluation of Machine Translation

BLEU Score Implementation for paper: BLEU: a Method for Automatic Evaluation of Machine Translation Author: Ba Ngoc from ProtonX BLEU score is a popul

Ngoc Nguyen Ba 6 Oct 07, 2021
Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time.

Wordle_Bot Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time. It will log onto the wordle website and en

Lucas Polidori 15 Dec 11, 2022
pyupbit 라이브러리를 활용하여 upbit에서 비트코인을 자동매매하는 코드입니다. 조코딩 유튜브 채널에서 자세한 강의 영상을 보실 수 있습니다.

파이썬 비트코인 투자 자동화 강의 코드 by 유튜브 조코딩 채널 pyupbit 라이브러리를 활용하여 upbit 거래소에서 비트코인 자동매매를 하는 코드입니다. 파일 구성 test.py : 잔고 조회 (1강) backtest.py : 백테스팅 코드 (2강) bestK.p

조코딩 JoCoding 186 Dec 29, 2022
Journey is a NLP-Powered Developer assistant

Journey Journey is a NLP-Powered Developer assistant Using on the powerful Natural Language Processing library Mindmeld, this projects aims to assist

Christian Eilers 21 Dec 11, 2022
A BERT-based reverse-dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end Quick Start C

Eu-Bin KIM 94 Dec 08, 2022
Transformer - A TensorFlow Implementation of the Transformer: Attention Is All You Need

[UPDATED] A TensorFlow Implementation of Attention Is All You Need When I opened this repository in 2017, there was no official code yet. I tried to i

Kyubyong Park 3.8k Dec 26, 2022
FewCLUE: 为中文NLP定制的小样本学习测评基准

FewCLUE: 为中文NLP定制的小样本学习测评基准

CLUE benchmark 387 Jan 04, 2023
Machine Psychology: Python Generated Art

Machine Psychology: Python Generated Art A limited collection of 64 algorithmically generated artwork. Each unique piece is then given a title by the

Pixegami Team 67 Dec 13, 2022
Chinese Grammatical Error Diagnosis

nlp-CGED Chinese Grammatical Error Diagnosis 中文语法纠错研究 基于序列标注的方法 所需环境 Python==3.6 tensorflow==1.14.0 keras==2.3.1 bert4keras==0.10.6 笔者使用了开源的bert4keras

12 Nov 25, 2022
Python package for performing Entity and Text Matching using Deep Learning.

DeepMatcher DeepMatcher is a Python package for performing entity and text matching using deep learning. It provides built-in neural networks and util

461 Dec 28, 2022
Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow. This is part of the CASL project: http://casl-project.ai/

Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides

ASYML 2.3k Jan 07, 2023
This Project is based on NLTK It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its antonyms, its synonyms

This Project is based on NLTK(Natural Language Toolkit) It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its

SaiVenkatDhulipudi 2 Nov 17, 2021
The code from the whylogs workshop in DataTalks.Club on 29 March 2022

whylogs Workshop The code from the whylogs workshop in DataTalks.Club on 29 March 2022 whylogs - The open source standard for data logging (Don't forg

DataTalksClub 12 Sep 05, 2022
🎐 a python library for doing approximate and phonetic matching of strings.

jellyfish Jellyfish is a python library for doing approximate and phonetic matching of strings. Written by James Turk James Turk 1.8k Dec 21, 2022

DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect.

117 Jan 07, 2023
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

13.2k Jul 07, 2021
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

OpenNMT 5.8k Jan 04, 2023
I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive

I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive. Obstacles like sentence negation, sarcasm, terseness, language ambiguity, and many others

1 Jan 13, 2022
Harvis is designed to automate your C2 Infrastructure.

Harvis Harvis is designed to automate your C2 Infrastructure, currently using Mythic C2. 📌 What is it? Harvis is a python tool to help you create mul

Thiago Mayllart 99 Oct 06, 2022
A design of MIDI language for music generation task, specifically for Natural Language Processing (NLP) models.

MIDI Language Introduction Reference Paper: Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions: code This

Robert Bogan Kang 3 May 25, 2022