Graph Coloring - Weighted Vertex Coloring Problem

Overview

Graph Coloring - Weighted Vertex Coloring Problem

MIT License

This project proposes several local searches and an MCTS algorithm for the weighted vertex coloring problem (WVCP).

This problem is an variant of the Graph Coloring Problem. Given a weighted graph G=(V,E), the set of vertices V, the set of edges E and let W be the set of weights w(v) associated to each vertex v in V, the WVCP consists in finding a partition of the vertices V in into k color groups S=(V_1,...,Vk) (1 \leq k \leq |V|) such that no adjacent vertices belong to the same color group and such that the objective function f(S) = \sum_{i=1}^{k}\max_{v\in V_i}{w(v)} is minimized.

This project is coded in C++ for the calculation part and in Python for the data analysis. This work is related to the article :

Grelier, C., Goudet, O., Hao, J.-K., 2022. On Monte Carlo Tree Search for Weighted Vertex Coloring. arXiv:2202.01665 [cs]. https://arxiv.org/abs/2202.01665

Requirements

To compile this project you need :

  • cmake 3.14+
  • Doxygen (optional, to build the documentation)
  • Python (used with 3.8+ for the slurm job generators, data analysis and documentation)

Run the project

Clone the project

git clone https://github.com/Cyril-Grelier/gc_wvcp_mcts

Go to the project directory

cd gc_wvcp_mcts

Load the instances

git submodule init
git submodule update

Build and compile the project :

./scripts/build.sh

Run the project :

cd build
./gc_wvcp --help

Run with slurm

You can find a generator of “to_eval” file to run jobs with slurm or GNU parallel. Set the desired instances, random seed and different parameters in scripts/generator_to_eval_ls.py (for local search) or scripts/generator_to_eval_mcts.py (for mcts) and run the script with python (no particular packages are required) python scripts/generator_to_eval_mcts.py and it will generate output directory and a to_eval file which will contain each command line argument to run with slurm or GNU Parallel.

Create Python environment for data analysis or documentation

Make sure to create the environment for python and activate it before running scripts for data analysis or documentation :

./scripts/build_python.sh
source venv/bin/activate

Data analysis

scripts/generate_table.py takes raw data and convert it to xlsx files (in xlsx_files repertory) with colored best scores, p-value calculation.

Make sure to set all required methods, instances and output names directly in the script before running it.

Results

You can find the raw results in outputs from runs of the code on different instances on the cluster of Nantes : https://ccipl.univ-nantes.fr/ (nazare nodes). These files are in csv format with the header on the first line, followed by each improving solution found during the search (with the complete solution), the last line corresponds to the best solution found during the whole search with the number of iterations, the time,… at the end of the run. The processed data can be found in xlsx_files (files generated by scripts/generate_table.py script). In those files, the results are slightly different comparing to the results in the article as they have been computed on a different CPU but the tendency stay the same.

Documentation

You can generate the documentation by running :

cd docs
make html

The doc main page will be located in : docs/_build/html/index.html. It’s a basic documentation generated from comments in the code.

Acknowledgements

We would like to thank Dr. Wen Sun for sharing the binary code of their AFISA algorithm [1] (the AFISA algorithm have been reimplemented from the article, afisa_original), Dr. Yiyuan Wang for sharing the code of their RedLS algorithm [2] (the RedLS algorithm have been reimplemented from the article, redls) and Pr. Bruno Nogueira for sharing the code of their ILS-TS algorithm [3] (some part of the code have been used and adapted to the implementation of the project, ilsts).

Owner
Cyril
PHD student currently working on metaheuristic (soon) guided by deep learning to solve graph coloring problems.
Cyril
This repository contains helper functions which can help you generate additional data points depending on your NLP task.

NLP Albumentations For Data Augmentation This repository contains helper functions which can help you generate additional data points depending on you

Aflah 6 May 22, 2022
A notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository

We provide a notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository. The notebook also shows how to segment the corpus using BPE tokenizatio

Computation for Indian Language Technology (CFILT) 9 Oct 13, 2022
문장단위로 분절된 나무위키 데이터셋. Releases에서 다운로드 받거나, tfds-korean을 통해 다운로드 받으세요.

Namuwiki corpus 문장단위로 미리 분절된 나무위키 코퍼스. 목적이 LM등에서 사용하기 위한 데이터셋이라, 링크/이미지/테이블 등등이 잘려있습니다. 문장 단위 분절은 kss를 활용하였습니다. 라이선스는 나무위키에 명시된 바와 같이 CC BY-NC-SA 2.0

Jeong Ukjae 16 Apr 02, 2022
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Habib Abdurrasyid 5 Dec 28, 2021
A full spaCy pipeline and models for scientific/biomedical documents.

This repository contains custom pipes and models related to using spaCy for scientific documents. In particular, there is a custom tokenizer that adds

AI2 1.3k Jan 03, 2023
Multilingual text (NLP) processing toolkit

polyglot Polyglot is a natural language pipeline that supports massive multilingual applications. Free software: GPLv3 license Documentation: http://p

RAMI ALRFOU 2.1k Jan 07, 2023
Coreference resolution for English, French, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, Explosion AI 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 French 1.2.3 German 1.2

Explosion 70 Dec 12, 2022
My implementation of Safaricom Machine Learning Codility test. The code has bugs, logical I guess I made errors and any correction will be appreciated.

Safaricom_Codility Machine Learning 2022 The test entails two questions. Question 1 was on Machine Learning. Question 2 was on SQL I ran out of time.

Lawrence M. 1 Mar 03, 2022
Code for paper: An Effective, Robust and Fairness-awareHate Speech Detection Framework

BiQQLSTM_HS Code and data for paper: Title: An Effective, Robust and Fairness-awareHate Speech Detection Framework. Authors: Guanyi Mou and Kyumin Lee

Guanyi Mou 2 Dec 27, 2022
Weird Sort-and-Compress Thing

Weird Sort-and-Compress Thing A weird integer sorting + compression algorithm inspired by a conversation with Luthingx (it probably already exists by

Douglas 1 Jan 03, 2022
Python functions for summarizing and improving voice dictation input.

Helpmespeak Help me speak uses Python functions for summarizing and improving voice dictation input. Get started with OpenAI gpt-3 OpenAI is a amazing

Margarita Humanitarian Foundation 6 Dec 17, 2022
Training code for Korean multi-class sentiment analysis

KoSentimentAnalysis Bert implementation for the Korean multi-class sentiment analysis 왜 한국어 감정 다중분류 모델은 거의 없는 것일까?에서 시작된 프로젝트 Environment: Pytorch, Da

Donghoon Shin 3 Dec 02, 2022
Implementation of some unbalanced loss like focal_loss, dice_loss, DSC Loss, GHM Loss et.al

Implementation of some unbalanced loss for NLP task like focal_loss, dice_loss, DSC Loss, GHM Loss et.al Summary Here is a loss implementation reposit

121 Jan 01, 2023
Baseline code for Korean open domain question answering(ODQA)

Open-Domain Question Answering(ODQA)는 다양한 주제에 대한 문서 집합으로부터 자연어 질의에 대한 답변을 찾아오는 task입니다. 이때 사용자 질의에 답변하기 위해 주어지는 지문이 따로 존재하지 않습니다. 따라서 사전에 구축되어있는 Knowl

VUMBLEB 69 Nov 04, 2022
A curated list of FOSS tools to improve the Hacker News experience

Awesome-Hackernews Hacker News is a social news website focusing on computer technologies, hacking and startups. It promotes any content likely to "gr

Bryton Lacquement 141 Dec 27, 2022
SummerTime - Text Summarization Toolkit for Non-experts

A library to help users choose appropriate summarization tools based on their specific tasks or needs. Includes models, evaluation metrics, and datasets.

Yale-LILY 213 Jan 04, 2023
ByT5: Towards a token-free future with pre-trained byte-to-byte models

ByT5: Towards a token-free future with pre-trained byte-to-byte models ByT5 is a tokenizer-free extension of the mT5 model. Instead of using a subword

Google Research 409 Jan 06, 2023
Japanese Long-Unit-Word Tokenizer with RemBertTokenizerFast of Transformers

Japanese-LUW-Tokenizer Japanese Long-Unit-Word (国語研長単位) Tokenizer for Transformers based on 青空文庫 Basic Usage from transformers import RemBertToken

Koichi Yasuoka 3 Dec 22, 2021
Predict an emoji that is associated with a text

Sentiment Analysis Sentiment analysis in computational linguistics is a general term for techniques that quantify sentiment or mood in a text. Can you

Tetsumichi(Telly) Umada 30 Sep 07, 2022