Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Overview

Projeto-Final-Salario-dos-Brasileiros

Esquema do Projeto

Descrição

Todas as equipes deverão entregar as mesmas especificações, de acordo com o seu respectivo tema. Vocês deverão aplicar os conceitos vistos durante o curso para tratar, organizar e modelar os dados de 2 datasets escolhidos por vocês seguindo o tema de sua equipe. Obrigatoriamente deverá conter as tecnologias Google Cloud Platform(Cloud Storage), Python, Pandas, PySpark, SparkSQL, Apache Beam*, Data Studio, Big Query.

Apresentação

  • A apresentação do trabalho se dará da seguinte maneira:
  • Cada grupo deverá ser totalmente responsável pela forma pela qual vai interpretar o dataset, apresentando suposições e conclusões dos dados. Todas essas situações devem ser explicadas.
  • Deverá iniciar pela apresentação do dataset, informando de qual local foi baixado o dataset e quais as principais informações sobre o mesmo.
  • Deverá apresentar as funções e ferramentas utilizadas no código.
  • Explicar o porquê do dataset escolhido.
  • Todos os componentes deverão se apresentar.
  • Deverá ser usado termos técnicos, evitando o uso de gírias ou expressões coloquiais e/ou culturais.
  • Cada grupo terá 60 minutos para se apresentar.
  • A ordem da apresentação será comunicada pelos professores próximo à data de apresentação.

Principais Habilidades a serem avaliadas

  • Oralidade e comunicação em público.
  • Capacidade de argumentação
  • Habilidade de codificação em Python
  • Habilidade de interpretação e análise de dados.
  • Capacidade de implementação de códigos utilizando as bibliotecas Pandas e PySpark.
  • Capacidade de implementação de consultas utilizando a linguagem SQL.
  • Capacidade Analítica e Interpretativa.

REQUISITOS OBRIGATÓRIOS

  • Obrigatoriamente os datasets devem ter formatos diferentes (CSV / Json / Parquet / Sql / NoSql) e 1 deles obrigatoriamente tem que ser em CSV.
  • Operações com Pandas (limpezas , transformações e normalizações)
  • Operações usando PySpark com a descrição de cada uma das operações.
  • Operações utilizando o SparkSQL com a descrição de cada umas das operações.
  • Os datasets utilizados podem ser em lingua estrangeira , mas devem ao final terem seus dados/colunas exibidos na lingua PT-BR
  • os datasets devem ser salvos e operados em armazenamento cloud obrigatoriamente dentro da plataforma GCP (não pode ser usado Google drive ou armazenamento alheio ao google)
  • os dados tratados devem ser armazenados também em GCP, mas obrigatoriamente em um datalake(Gstorage ) , DW(BigQuery) ou em ambos.
  • Deve ser feito análises dentro do Big Query utilizando a linguagem padrão SQL com a descrição das consultas feitas.
  • Deve ser criado no datastudio um dash board simples para exibição gráfica dos dados tratados trazendo insights importantes
  • E deve ser demonstrado em um workflow simples (gráfico) as etapas de ETL.

REQUISITOS DESEJÁVEIS

  • Implementar captura e ingestão de dados por meio de uma PIPELINE com modelo criado em apache beam usando o dataflow para o work
  • Criar plotagens usando pandas para alguns insights durante o processo de Transformação
  • Por meio de uma PIPELINE fazer o carregamento dos dados normalizados diretamente para um DW ou DataLake ou ambos
  • Montar um relatório completo com os insights que justificam todo o processo de ETL utilizado

Diagrama da arquitetura do pipeline de dados (ELT)

1639062920753

Dashboards

image

Acesso ao Dashboard

https://datastudio.google.com/reporting/a1848536-d356-4c2b-b712-5d6777962fcb/page/p_wewachuqpc?authuser=1

Owner
Débora Mendes de Azevedo
Débora Mendes de Azevedo
Implementation in Python of the reliability measures such as Omega.

OmegaPy Summary Simple implementation in Python of the reliability measures: Omega Total, Omega Hierarchical and Omega Hierarchical Total. Name Link O

Rafael Valero Fernández 2 Apr 27, 2022
Time ranges with python

timeranges Time ranges. Read the Docs Installation pip timeranges is available on pip: pip install timeranges GitHub You can also install the latest v

Micael Jarniac 2 Sep 01, 2022
A 2-dimensional physics engine written in Cairo

A 2-dimensional physics engine written in Cairo

Topology 38 Nov 16, 2022
Flood modeling by 2D shallow water equation

hydraulicmodel Flood modeling by 2D shallow water equation. Refer to Hunter et al (2005), Bates et al. (2010). Diffusive wave approximation Local iner

6 Nov 30, 2022
💬 Python scripts to parse Messenger, Hangouts, WhatsApp and Telegram chat logs into DataFrames.

Chatistics Python 3 scripts to convert chat logs from various messaging platforms into Pandas DataFrames. Can also generate histograms and word clouds

Florian 893 Jan 02, 2023
GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors

GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors. GWpy provides a user-f

GWpy 342 Jan 07, 2023
ToeholdTools is a Python package and desktop app designed to facilitate analyzing and designing toehold switches, created as part of the 2021 iGEM competition.

ToeholdTools Category Status Repository Package Build Quality A library for the analysis of toehold switch riboregulators created by the iGEM team Cit

0 Dec 01, 2021
Zipline, a Pythonic Algorithmic Trading Library

Zipline is a Pythonic algorithmic trading library. It is an event-driven system for backtesting. Zipline is currently used in production as the backte

Quantopian, Inc. 15.7k Jan 07, 2023
Python package for analyzing behavioral data for Brain Observatory: Visual Behavior

Allen Institute Visual Behavior Analysis package This repository contains code for analyzing behavioral data from the Allen Brain Observatory: Visual

Allen Institute 16 Nov 04, 2022
🌍 Create 3d-printable STLs from satellite elevation data 🌏

mapa 🌍 Create 3d-printable STLs from satellite elevation data Installation pip install mapa Usage mapa uses numpy and numba under the hood to crunch

Fabian Gebhart 13 Dec 15, 2022
A Python module for clustering creators of social media content into networks

sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks

72 Dec 30, 2022
PyClustering is a Python, C++ data mining library.

pyclustering is a Python, C++ data mining library (clustering algorithm, oscillatory networks, neural networks). The library provides Python and C++ implementations (C++ pyclustering library) of each

Andrei Novikov 1k Jan 05, 2023
Scraping and analysis of leetcode-compensations page.

Leetcode compensations report Scraping and analysis of leetcode-compensations page.

utsav 96 Jan 01, 2023
CS50 pset9: Using flask API to create a web application to exchange stocks' shares.

C$50 Finance In this guide we want to implement a website via which users can “register”, “login” “buy” and “sell” stocks, like below: Background If y

1 Jan 24, 2022
Learn machine learning the fun way, with Oracle and RedBull Racing

Red Bull Racing Analytics Hands-On Labs Introduction Are you interested in learning machine learning (ML)? How about doing this in the context of the

Oracle DevRel 55 Oct 24, 2022
Tokyo 2020 Paralympics, Analytics

Tokyo 2020 Paralympics, Analytics Thanks for checking out my app! It was built entirely using matplotlib and Tokyo 2020 Paralympics data. This applica

Petro Ivaniuk 1 Nov 18, 2021
Elementary is an open-source data reliability framework for modern data teams. The first module of the framework is data lineage.

Data lineage made simple, reliable, and automated. Effortlessly track the flow of data, understand dependencies and analyze impact. Features Visualiza

898 Jan 09, 2023
collect training and calibration data for gaze tracking

Collect Training and Calibration Data for Gaze Tracking This tool allows collecting gaze data necessary for personal calibration or training of eye-tr

Pascal 5 Dec 17, 2022
Full ELT process on GCP environment.

Rent Houses Germany - GCP Pipeline Project: The goal of the project is to extract data about house rentals in Germany, store, process and analyze it u

Felipe Demenech Vasconcelos 2 Jan 20, 2022
Airflow ETL With EKS EFS Sagemaker

Airflow ETL With EKS EFS & Sagemaker (en desarrollo) Diagrama de la solución Imp

1 Feb 14, 2022