CONditionals for Ordinal Regression and classification in tensorflow

Overview

Condor Ordinal regression in Tensorflow Keras

Continuous Integration License Python 3

Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jenkinson et al (2021).

CONDOR is compatible with any state-of-the-art deep neural network architecture, requiring only modification of the output layer, the labels, and the loss function. Read our full documentation to learn more.

We also have implemented CONDOR for pytorch.

This package includes:

  • Ordinal tensorflow loss function: CondorOrdinalCrossEntropy
  • Ordinal tensorflow error metric: OrdinalMeanAbsoluteError
  • Ordinal tensorflow error metric: OrdinalEarthMoversDistance
  • Ordinal tensorflow sparse loss function: CondorSparseOrdinalCrossEntropy
  • Ordinal tensorflow sparse error metric: SparseOrdinalMeanAbsoluteError
  • Ordinal tensorflow sparse error metric: SparseOrdinalEarthMoversDistance
  • Ordinal tensorflow activation function: ordinal_softmax
  • Ordinal sklearn label encoder: CondorOrdinalEncoder

Installation

Install the stable version via pip:

pip install condor-tensorflow

Alternatively install the most recent code on GitHub via pip:

pip install git+https://github.com/GarrettJenkinson/condor_tensorflow/

condor_tensorflow should now be available for use as a Python library.

Docker container

As an alternative to the above, we provide a convenient Dockerfile that will build a container with condor_tensorflow along with all of its dependencies (Python 3.6+, Tensorflow 2.2+, sklearn, numpy). This can be used as follows:

# Clone this git repository
git clone https://github.com/GarrettJenkinson/condor_tensorflow/

# Change directory to the cloned repository root
cd condor_tensorflow

# Create a docker image
docker build -t cpu_tensorflow -f cpu.Dockerfile ./

# run image to serve a jupyter notebook 
docker run -it -p 8888:8888 --rm cpu_tensorflow

# how to run bash inside container (with Python that will have required dependencies available)
docker run -u $(id -u):$(id -g) -it -p 8888:8888 --rm cpu_tensorflow bash

Assuming a GPU enabled machine with NVIDIA drivers installed replace cpu above with gpu.

Example

This is a quick example to show basic model implementation syntax.
Example assumes existence of input data (variable 'X') and ordinal labels (variable 'labels').

import tensorflow as tf
import condor_tensorflow as condor
NUM_CLASSES = 5
# Ordinal 'labels' variable has 5 labels, 0 through 4.
enc_labs = condor.CondorOrdinalEncoder(nclasses=NUM_CLASSES).fit_transform(labels)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(32, activation = "relu"))
model.add(tf.keras.layers.Dense(NUM_CLASSES-1)) # Note the "-1"
model.compile(loss = condor.CondorOrdinalCrossEntropy(),
              metrics = [condor.OrdinalMeanAbsoluteError()])
model.fit(x = X, y = enc_labs)

See this colab notebook for extended examples of ordinal regression with MNIST and Amazon reviews (universal sentence encoder).

Please post any issues to the issue queue.

Acknowledgments: Many thanks to the CORAL ordinal authors and the CORAL pytorch authors whose repos provided a roadmap for this codebase.

References

Jenkinson, Khezeli, Oliver, Kalantari, Klee. Universally rank consistent ordinal regression in neural networks, arXiv:2110.07470, 2021.

Comments
  • providing weighted metric  causes error

    providing weighted metric causes error

    example code:

    compileOptions = {
    'optimizer': tf.keras.optimizers.Adam(learning_rate=5e-4),
    'loss': condor.CondorOrdinalCrossEntropy(),
    'metrics': [
                condor.OrdinalEarthMoversDistance(name='condorErrOrdinalMoversDist'),
                condor.OrdinalMeanAbsoluteError(name='ordinalMAbsErr')
                ]
    'weighted_metrics': [
                condor.OrdinalEarthMoversDistance(name='condorErrOrdinalMoversDist'),
                condor.OrdinalMeanAbsoluteError(name='ordinalMAbsErr')
                ]
    }
    
    model.compile(**compileOptions)
    model.fit(x=X_train,y=Y_train,batch_size=32,epochs=100,validation_data=(x_val, y_val, val_sample_weights), sample_weight=sampleweight_train)
    
    

    would generate the following error:

    
        File "/usr/local/lib/python3.7/dist-packages/condor_tensorflow/metrics.py", line 24, in update_state  *
            if sample_weight:
    
        ValueError: condition of if statement expected to be `tf.bool` scalar, got Tensor("ExpandDims_1:0", shape=(None, 1), dtype=float32); to use as boolean Tensor, use `tf.cast`; to check for None, use `is not None`
    

    If I don't provide weighted_metrics in model.compile option but remain to use sample_weight=sampleweight_train argument in model.fit, no errors would show up.

    Thank you!

    enhancement 
    opened by tingjhenjiang 7
  • loss reduction support

    loss reduction support

    While I want to do a distributed training including training on Google Colab TPU, errors as shown below would occurs:

    
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/training/tracking/base.py in _method_wrapper(self, *args, **kwargs)
        528     self._self_setattr_tracking = False  # pylint: disable=protected-access
        529     try:
    --> 530       result = method(self, *args, **kwargs)
        531     finally:
        532       self._self_setattr_tracking = previous_value  # pylint: disable=protected-access
    
    /usr/local/lib/python3.7/dist-packages/keras/engine/training_v1.py in compile(self, optimizer, loss, metrics, loss_weights, sample_weight_mode, weighted_metrics, target_tensors, distribute, **kwargs)
        434           targets=self._targets,
        435           skip_target_masks=self._prepare_skip_target_masks(),
    --> 436           masks=self._prepare_output_masks())
        437 
        438       # Prepare sample weight modes. List with the same length as model outputs.
    
    /usr/local/lib/python3.7/dist-packages/keras/engine/training_v1.py in _handle_metrics(self, outputs, targets, skip_target_masks, sample_weights, masks, return_weighted_metrics, return_weighted_and_unweighted_metrics)
       1962           metric_results.extend(
       1963               self._handle_per_output_metrics(self._per_output_metrics[i],
    -> 1964                                               target, output, output_mask))
       1965         if return_weighted_and_unweighted_metrics or return_weighted_metrics:
       1966           metric_results.extend(
    
    /usr/local/lib/python3.7/dist-packages/keras/engine/training_v1.py in _handle_per_output_metrics(self, metrics_dict, y_true, y_pred, mask, weights)
       1913       with backend.name_scope(metric_name):
       1914         metric_result = training_utils_v1.call_metric_function(
    -> 1915             metric_fn, y_true, y_pred, weights=weights, mask=mask)
       1916         metric_results.append(metric_result)
       1917     return metric_results
    
    /usr/local/lib/python3.7/dist-packages/keras/engine/training_utils_v1.py in call_metric_function(metric_fn, y_true, y_pred, weights, mask)
       1175 
       1176   if y_pred is not None:
    -> 1177     return metric_fn(y_true, y_pred, sample_weight=weights)
       1178   # `Mean` metric only takes a single value.
       1179   return metric_fn(y_true, sample_weight=weights)
    
    /usr/local/lib/python3.7/dist-packages/keras/metrics.py in __call__(self, *args, **kwargs)
        235     from keras.distribute import distributed_training_utils  # pylint:disable=g-import-not-at-top
        236     return distributed_training_utils.call_replica_local_fn(
    --> 237         replica_local_fn, *args, **kwargs)
        238 
        239   def __str__(self):
    
    /usr/local/lib/python3.7/dist-packages/keras/distribute/distributed_training_utils.py in call_replica_local_fn(fn, *args, **kwargs)
         58     with strategy.scope():
         59       return strategy.extended.call_for_each_replica(fn, args, kwargs)
    ---> 60   return fn(*args, **kwargs)
         61 
         62 
    
    /usr/local/lib/python3.7/dist-packages/keras/metrics.py in replica_local_fn(*args, **kwargs)
        215         update_op = None
        216       else:
    --> 217         update_op = self.update_state(*args, **kwargs)  # pylint: disable=not-callable
        218       update_ops = []
        219       if update_op is not None:
    
    /usr/local/lib/python3.7/dist-packages/keras/utils/metrics_utils.py in decorated(metric_obj, *args, **kwargs)
         71 
         72     with tf_utils.graph_context_for_symbolic_tensors(*args, **kwargs):
    ---> 73       update_op = update_state_fn(*args, **kwargs)
         74     if update_op is not None:  # update_op will be None in eager execution.
         75       metric_obj.add_update(update_op)
    
    /usr/local/lib/python3.7/dist-packages/keras/metrics.py in update_state_fn(*args, **kwargs)
        175         control_status = tf.__internal__.autograph.control_status_ctx()
        176         ag_update_state = tf.__internal__.autograph.tf_convert(obj_update_state, control_status)
    --> 177         return ag_update_state(*args, **kwargs)
        178     else:
        179       if isinstance(obj.update_state, tf.__internal__.function.Function):
    
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py in wrapper(*args, **kwargs)
        694       try:
        695         with conversion_ctx:
    --> 696           return converted_call(f, args, kwargs, options=options)
        697       except Exception as e:  # pylint:disable=broad-except
        698         if hasattr(e, 'ag_error_metadata'):
    
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py in converted_call(f, args, kwargs, caller_fn_scope, options)
        381 
        382   if not options.user_requested and conversion.is_allowlisted(f):
    --> 383     return _call_unconverted(f, args, kwargs, options)
        384 
        385   # internal_convert_user_code is for example turned off when issuing a dynamic
    
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py in _call_unconverted(f, args, kwargs, options, update_cache)
        462 
        463   if kwargs is not None:
    --> 464     return f(*args, **kwargs)
        465   return f(*args)
        466 
    
    /usr/local/lib/python3.7/dist-packages/keras/metrics.py in update_state(self, y_true, y_pred, sample_weight)
        723 
        724     ag_fn = tf.__internal__.autograph.tf_convert(self._fn, tf.__internal__.autograph.control_status_ctx())
    --> 725     matches = ag_fn(y_true, y_pred, **self._fn_kwargs)
        726     return super(MeanMetricWrapper, self).update_state(
        727         matches, sample_weight=sample_weight)
    
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py in wrapper(*args, **kwargs)
        694       try:
        695         with conversion_ctx:
    --> 696           return converted_call(f, args, kwargs, options=options)
        697       except Exception as e:  # pylint:disable=broad-except
        698         if hasattr(e, 'ag_error_metadata'):
    
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py in converted_call(f, args, kwargs, caller_fn_scope, options)
        381 
        382   if not options.user_requested and conversion.is_allowlisted(f):
    --> 383     return _call_unconverted(f, args, kwargs, options)
        384 
        385   # internal_convert_user_code is for example turned off when issuing a dynamic
    
    /usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py in _call_unconverted(f, args, kwargs, options, update_cache)
        462 
        463   if kwargs is not None:
    --> 464     return f(*args, **kwargs)
        465   return f(*args)
        466 
    
    /usr/local/lib/python3.7/dist-packages/keras/losses.py in __call__(self, y_true, y_pred, sample_weight)
        141       losses = call_fn(y_true, y_pred)
        142       return losses_utils.compute_weighted_loss(
    --> 143           losses, sample_weight, reduction=self._get_reduction())
        144 
        145   @classmethod
    
    /usr/local/lib/python3.7/dist-packages/keras/losses.py in _get_reduction(self)
        182          self.reduction == losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE)):
        183       raise ValueError(
    --> 184           'Please use `tf.keras.losses.Reduction.SUM` or '
        185           '`tf.keras.losses.Reduction.NONE` for loss reduction when losses are '
        186           'used with `tf.distribute.Strategy` outside of the built-in training '
    
    ValueError: Please use `tf.keras.losses.Reduction.SUM` or `tf.keras.losses.Reduction.NONE` for loss reduction when losses are used with `tf.distribute.Strategy` outside of the built-in training loops. You can implement `tf.keras.losses.Reduction.SUM_OVER_BATCH_SIZE` using global batch size like:
    
    with strategy.scope():
        loss_obj = tf.keras.losses.CategoricalCrossentropy(reduction=tf.keras.losses.Reduction.NONE)
        loss = tf.reduce_sum(loss_obj(labels, predictions)) * (1. / global_batch_size)
    Please see https://www.tensorflow.org/tutorials/distribute/custom_training for more details.
    

    it seems that support of loss reduction has not been implemented. It may be a little tricky, but it would be nice if you can add this enhancement.

    Thank you!

    enhancement 
    opened by tingjhenjiang 3
  • Importance weights.

    Importance weights.

    I had a question about the importance weights code below that was in one of the tutorial docs.

    Importance weights customization
    A quick example to show how the importance weights can be customized.
    model = create_model(num_classes = NUM_CLASSES)
    model.summary()
    # We have num_classes - 1 outputs (cumulative logits), so there are 9 elements
    # in the importance vector to customize.
    importance_weights = [1., 1., 0.5, 0.5, 0.5, 1., 1., 0.1, 0.1]
    loss_fn = condor.SparseCondorOrdinalCrossEntropy(importance_weights = importance_weights)
    model.compile(tf.keras.optimizers.Adam(lr = learning_rate), loss = loss_fn)
    history = model.fit(dataset, epochs = num_epochs)
    

    My problem:

    I have 5 classes, with underrepresentation of say the first and lass class. I want to use weights to assign higher importance to the underrepresented classes. In a dense layer with n(classes) == n(output_layers), the vector would look like.

    [1,0.5,0.5,0.5,1]

    With the CONDOR, using num_classes - 1 output layers, is it still possible to assign higher weights to underrepresented classes?

    I don't understand how to relate the N-1 output layers weights to the original weights where n(classes) == n(output_layers).

    Any feedback is appreciated.

    opened by jake-foxy 2
  • activation function at last layer

    activation function at last layer

    Hello, I've a dataset in which the labels are like (0,1,2,3). It means the number of classes in Y is 4.

    Method 1:

    Using the condor.CondorOrdinalEncoder(nclasses=4).fit_transform(labels) to transform labels to an array in shape (n, 3). [ [0,0,1],  [1,0,0] ] as model prediction objects. The last layer is tf.keras.layers.Dense(units=4-1), according to the readme, however by this design the default activation function of the last layer would be None/Linear( f(x) = x), and the output of the model would be simple logits. Should I keep the model outputs simple logits(no activation function)?

    Method 2:

    If I use tf.keras.layers.Dense(units=4-2, activation=condor.ordinal_softmax) as the last layer together with label data in shape (n, 3), would that be fine? (the condor.ordinal_softmax function would increase the number of dimension)

    Method 3: Or I should use tf.keras.layers.Dense(units=4-1, activation=condor.ordinal_softmax) as the last layer together with label data in shape (n, 4)?

    Which method is better? Thank you!

    opened by tingjhenjiang 2
  • Update labelencoder.py

    Update labelencoder.py

    When fitting data with nclass=0:

    1. self.feature_names_in_ would lose its functionality(the previous commit).
    2. Also, using sklearn.compose.ColumnTransformer to transform multiple columns with CondorOrdinalEncoder at a time would cause self.nclass changing in every transformation and thus the transformation would fail, and therefore it is necessary to differentiate.
    opened by tingjhenjiang 1
  • Upadate labelencoder.py add get_feature_names_out method

    Upadate labelencoder.py add get_feature_names_out method

    When I try to integrate sklearn.compose.ColumnTransformer, sklearn.pipeline with condor encoder, I find it difficult and errors happen due to lack of support. Therefore I add the support of get_feature_names_out method, which complies with the structure of sklearn.

    opened by tingjhenjiang 1
Releases(v1.0.1)
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Creating easier access to the Moroccan stock market data What is StocksMA ? StocksMA is a package to facilitate access to financial and economic data

Salah Eddine LABIAD 28 Jan 04, 2023
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
A machine learning project which can detect and predict the skin disease through image recognition.

ML-Project-2021 A machine learning project which can detect and predict the skin disease through image recognition. The dataset used for this is the H

Debshishu Ghosh 1 Jan 13, 2022
Real time sign language recognition

The proposed work aims at converting american sign language gestures into English that can be understood by everyone in real time.

Mohit Kaushik 6 Jun 13, 2022
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 06, 2022
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
Collections for the lasted paper about multi-view clustering methods (papers, codes)

Multi-View Clustering Papers Collections for the lasted paper about multi-view clustering methods (papers, codes). There also exists some repositories

Andrew Guan 10 Sep 20, 2022
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

AutoML-Freiburg-Hannover 26 Dec 12, 2022
The Simplest DCGAN Implementation

DCGAN in TensorLayer This is the TensorLayer implementation of Deep Convolutional Generative Adversarial Networks. Looking for Text to Image Synthesis

TensorLayer Community 310 Dec 13, 2022
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
Standalone pre-training recipe with JAX+Flax

Sabertooth Sabertooth is standalone pre-training recipe based on JAX+Flax, with data pipelines implemented in Rust. It runs on CPU, GPU, and/or TPU, b

Nikita Kitaev 26 Nov 28, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
Alphabetical Letter Recognition

DecisionTrees-Image-Classification Alphabetical Letter Recognition In these demo we are using "Decision Trees" Our database is composed by Learning Im

Mohammed Firass 4 Nov 30, 2021
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022