Implementation of the paper "Shapley Explanation Networks"

Overview

Shapley Explanation Networks

Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimental feature of named tensors in PyTorch. As it was really confusing to implement the ideas for the authors, we find it tremendously easier to use this feature.

Dependencies

For running only ShapNets, one would mostly only need PyTorch, NumPy, and SciPy.

Usage

For a Shapley Module:

import torch
import torch.nn as nn
from ShapNet.utils import ModuleDimensions
from ShapNet import ShapleyModule

b_size = 3
features = 4
out = 1
dims = ModuleDimensions(
    features=features,
    in_channel=1,
    out_channel=out
)

sm = ShapleyModule(
    inner_function=nn.Linear(features, out),
    dimensions=dims
)
sm(torch.randn(b_size, features), explain=True)

For a Shallow ShapNet

import torch
import torch.nn as nn
from ShapNet.utils import ModuleDimensions
from ShapNet import ShapleyModule, OverlappingShallowShapleyNetwork

batch_size = 32
class_num = 10
dim = 32

overlapping_modules = [
    ShapleyModule(
        inner_function=nn.Sequential(nn.Linear(2, class_num)),
        dimensions=ModuleDimensions(
            features=2, in_channel=1, out_channel=class_num
        ),
    ) for _ in range(dim * (dim - 1) // 2)
]
shallow_shapnet = OverlappingShallowShapleyNetwork(
    list_modules=overlapping_modules
)
inputs = torch.randn(batch_size, dim, ), )
shallow_shapnet(torch.randn(batch_size, dim, ), )
output, bias = shallow_shapnet(inputs, explain=True, )

For a Deep ShapNet

import torch
import torch.nn as nn
from ShapNet.utils import ModuleDimensions
from ShapNet import ShapleyModule, ShallowShapleyNetwork, DeepShapleyNetwork

dim = 32
dim_input_channels = 1
class_num = 10
inputs = torch.randn(32, dim, ), )


dims = ModuleDimensions(
    features=dim,
    in_channel=dim_input_channels,
    out_channel=class_num
)
deep_shapnet = DeepShapleyNetwork(
    list_shapnets=[
        ShallowShapleyNetwork(
            module_dict=nn.ModuleDict({
                "(0, 2)": ShapleyModule(
                    inner_function=nn.Linear(2, class_num),
                    dimensions=ModuleDimensions(
                        features=2, in_channel=1, out_channel=class_num
                    )
                )},
            ),
            dimensions=ModuleDimensions(dim, 1, class_num)
        ),
    ],
)
deep_shapnet(inputs)
outputs = deep_shapnet(inputs, explain=True, )

For a vision model:

import numpy as np
import torch
import torch.nn as nn

# =============================================================================
# Imports {\sc ShapNet}
# =============================================================================
from ShapNet import DeepConvShapNet, ShallowConvShapleyNetwork, ShapleyModule
from ShapNet.utils import ModuleDimensions, NAME_HEIGHT, NAME_WIDTH, \
    process_list_sizes

num_channels = 3
num_classes = 10
height = 32
width = 32
list_channels = [3, 16, 10]
pruning = [0.2, 0.]
kernel_sizes = process_list_sizes([2, (1, 3), ])
dilations = process_list_sizes([1, 2])
paddings = process_list_sizes([0, 0])
strides = process_list_sizes([1, 1])

args = {
    "list_shapnets": [
        ShallowConvShapleyNetwork(
            shapley_module=ShapleyModule(
                inner_function=nn.Sequential(
                    nn.Linear(
                        np.prod(kernel_sizes[i]) * list_channels[i],
                        list_channels[i + 1]),
                    nn.LeakyReLU()
                ),
                dimensions=ModuleDimensions(
                    features=int(np.prod(kernel_sizes[i])),
                    in_channel=list_channels[i],
                    out_channel=list_channels[i + 1])
            ),
            reference_values=None,
            kernel_size=kernel_sizes[i],
            dilation=dilations[i],
            padding=paddings[i],
            stride=strides[i]
        ) for i in range(len(list_channels) - 1)
    ],
    "reference_values": None,
    "residual": False,
    "named_output": False,
    "pruning": pruning
}

dcs = DeepConvShapNet(**args)

Citation

If this is useful, you could cite our work as

@inproceedings{
wang2021shapley,
title={Shapley Explanation Networks},
author={Rui Wang and Xiaoqian Wang and David I. Inouye},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=vsU0efpivw}
}
Owner
Prof. David I. Inouye's research lab at Purdue University.
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
DumpSMBShare - A script to dump files and folders remotely from a Windows SMB share

DumpSMBShare A script to dump files and folders remotely from a Windows SMB shar

Podalirius 178 Jan 06, 2023
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022
C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedal

Meta Research 309 Dec 16, 2022
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
This repo is to present various code demos on how to use our Graph4NLP library.

Deep Learning on Graphs for Natural Language Processing Demo The repository contains code examples for DLG4NLP tutorials at NAACL 2021, SIGIR 2021, KD

Graph4AI 143 Dec 23, 2022
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
Checkout some cool self-projects you can try your hands on to curb your boredom this December!

SoC-Winter Checkout some cool self-projects you can try your hands on to curb your boredom this December! These are short projects that you can do you

Web and Coding Club, IIT Bombay 29 Nov 08, 2022
Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Generative Handwriting Demo using TensorFlow An attempt to implement the random handwriting generation portion of Alex Graves' paper. See my blog post

hardmaru 686 Nov 24, 2022
YOLOv4-v3 Training Automation API for Linux

This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our

BMW TechOffice MUNICH 626 Dec 31, 2022
This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction

H3DS Dataset This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction Access

Crisalix 72 Dec 10, 2022
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023
PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)

1-bit Wide ResNet PyTorch implementation of training 1-bit Wide ResNets from this paper: Training wide residual networks for deployment using a single

Sergey Zagoruyko 122 Dec 07, 2022
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022